Properties

Label 23232cz
Number of curves 66
Conductor 2323223232
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("cz1")
 
E.isogeny_class()
 

Elliptic curves in class 23232cz

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
23232.bo5 23232cz1 [0,1,0,323,2653][0, -1, 0, 323, 2653] 2048/32048/3 5442235392-5442235392 [2][2] 1024010240 0.553600.55360 Γ0(N)\Gamma_0(N)-optimal
23232.bo4 23232cz2 [0,1,0,2097,28305][0, -1, 0, -2097, 28305] 35152/935152/9 261227298816261227298816 [2,2][2, 2] 2048020480 0.900170.90017  
23232.bo3 23232cz3 [0,1,0,11777,465375][0, -1, 0, -11777, -465375] 1556068/811556068/81 94041827573769404182757376 [2,2][2, 2] 4096040960 1.24671.2467  
23232.bo2 23232cz4 [0,1,0,31137,2124993][0, -1, 0, -31137, 2124993] 28756228/328756228/3 348303065088348303065088 [2][2] 4096040960 1.24671.2467  
23232.bo6 23232cz5 [0,1,0,7583,1863167][0, -1, 0, 7583, -1863167] 207646/6561207646/6561 1523477606694912-1523477606694912 [2][2] 8192081920 1.59331.5933  
23232.bo1 23232cz6 [0,1,0,186017,30817983][0, -1, 0, -186017, -30817983] 3065617154/93065617154/9 20898183905282089818390528 [2][2] 8192081920 1.59331.5933  

Rank

sage: E.rank()
 

The elliptic curves in class 23232cz have rank 11.

Complex multiplication

The elliptic curves in class 23232cz do not have complex multiplication.

Modular form 23232.2.a.cz

sage: E.q_eigenform(10)
 
qq3+2q5+q92q132q152q17+4q19+O(q20)q - q^{3} + 2 q^{5} + q^{9} - 2 q^{13} - 2 q^{15} - 2 q^{17} + 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(124488212244421422424188842814842841)\left(\begin{array}{rrrrrr} 1 & 2 & 4 & 4 & 8 & 8 \\ 2 & 1 & 2 & 2 & 4 & 4 \\ 4 & 2 & 1 & 4 & 2 & 2 \\ 4 & 2 & 4 & 1 & 8 & 8 \\ 8 & 4 & 2 & 8 & 1 & 4 \\ 8 & 4 & 2 & 8 & 4 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.