E = EllipticCurve("l1")
E.isogeny_class()
Elliptic curves in class 232760l
sage: E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
232760.l3 |
232760l1 |
[0,0,0,−2667218,−1676624767] |
885956203616256/15125 |
35824685138000 |
[2] |
3548160 |
2.1427
|
Γ0(N)-optimal |
232760.l2 |
232760l2 |
[0,0,0,−2669863,−1673132838] |
55537159171536/228765625 |
8669573803396000000 |
[2,2] |
7096320 |
2.4893
|
|
232760.l1 |
232760l3 |
[0,0,0,−3992363,158000662] |
46424454082884/26794860125 |
4061799361776666752000 |
[2] |
14192640 |
2.8359
|
|
232760.l4 |
232760l4 |
[0,0,0,−1389683,−3280782882] |
−1957960715364/29541015625 |
−4478085642250000000000 |
[2] |
14192640 |
2.8359
|
|
The elliptic curves in class 232760l have
rank 1.
The elliptic curves in class 232760l do not have complex multiplication.
sage: E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
⎝⎜⎜⎛1244212242144241⎠⎟⎟⎞
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.