sage:E = EllipticCurve("f1")
E.isogeny_class()
Elliptic curves in class 23520.f
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
23520.f1 |
23520c1 |
[0,−1,0,−1486,−19424] |
140608/15 |
38739462720 |
[2] |
17920 |
0.76604
|
Γ0(N)-optimal |
23520.f2 |
23520c2 |
[0,−1,0,1944,−99000] |
39304/225 |
−4648735526400 |
[2] |
35840 |
1.1126
|
|
sage:E.rank()
The elliptic curves in class 23520.f have
rank 0.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1 |
3 | 1+T |
5 | 1+T |
7 | 1 |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
11 |
1+2T+11T2 |
1.11.c
|
13 |
1−2T+13T2 |
1.13.ac
|
17 |
1+17T2 |
1.17.a
|
19 |
1+4T+19T2 |
1.19.e
|
23 |
1+23T2 |
1.23.a
|
29 |
1+4T+29T2 |
1.29.e
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 23520.f do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
(1221)
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.