Properties

Label 23520.f
Number of curves 22
Conductor 2352023520
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("f1") E.isogeny_class()
 

Elliptic curves in class 23520.f

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
23520.f1 23520c1 [0,1,0,1486,19424][0, -1, 0, -1486, -19424] 140608/15140608/15 3873946272038739462720 [2][2] 1792017920 0.766040.76604 Γ0(N)\Gamma_0(N)-optimal
23520.f2 23520c2 [0,1,0,1944,99000][0, -1, 0, 1944, -99000] 39304/22539304/225 4648735526400-4648735526400 [2][2] 3584035840 1.11261.1126  

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 23520.f have rank 00.

L-function data

 
Bad L-factors:
Prime L-Factor
2211
331+T1 + T
551+T1 + T
7711
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
1111 1+2T+11T2 1 + 2 T + 11 T^{2} 1.11.c
1313 12T+13T2 1 - 2 T + 13 T^{2} 1.13.ac
1717 1+17T2 1 + 17 T^{2} 1.17.a
1919 1+4T+19T2 1 + 4 T + 19 T^{2} 1.19.e
2323 1+23T2 1 + 23 T^{2} 1.23.a
2929 1+4T+29T2 1 + 4 T + 29 T^{2} 1.29.e
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 23520.f do not have complex multiplication.

Modular form 23520.2.a.f

Copy content sage:E.q_eigenform(10)
 
qq3q5+q92q11+2q13+q154q19+O(q20)q - q^{3} - q^{5} + q^{9} - 2 q^{11} + 2 q^{13} + q^{15} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1221)\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.