Properties

Label 23520.f
Number of curves $2$
Conductor $23520$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("f1")
 
E.isogeny_class()
 

Elliptic curves in class 23520.f

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
23520.f1 23520c1 \([0, -1, 0, -1486, -19424]\) \(140608/15\) \(38739462720\) \([2]\) \(17920\) \(0.76604\) \(\Gamma_0(N)\)-optimal
23520.f2 23520c2 \([0, -1, 0, 1944, -99000]\) \(39304/225\) \(-4648735526400\) \([2]\) \(35840\) \(1.1126\)  

Rank

sage: E.rank()
 

The elliptic curves in class 23520.f have rank \(0\).

Complex multiplication

The elliptic curves in class 23520.f do not have complex multiplication.

Modular form 23520.2.a.f

sage: E.q_eigenform(10)
 
\(q - q^{3} - q^{5} + q^{9} - 2 q^{11} + 2 q^{13} + q^{15} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.