Properties

Label 235200qq
Number of curves $4$
Conductor $235200$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("qq1")
 
E.isogeny_class()
 

Elliptic curves in class 235200qq

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
235200.qq4 235200qq1 \([0, 1, 0, -1416508, 977960738]\) \(-2671731885376/1969120125\) \(-231665013586125000000\) \([2]\) \(7077888\) \(2.6071\) \(\Gamma_0(N)\)-optimal
235200.qq3 235200qq2 \([0, 1, 0, -25726633, 50205963863]\) \(250094631024064/62015625\) \(466948881000000000000\) \([2, 2]\) \(14155776\) \(2.9536\)  
235200.qq1 235200qq3 \([0, 1, 0, -411601633, 3213995088863]\) \(128025588102048008/7875\) \(474360768000000000\) \([2]\) \(28311552\) \(3.3002\)  
235200.qq2 235200qq4 \([0, 1, 0, -28813633, 37398000863]\) \(43919722445768/15380859375\) \(926485875000000000000000\) \([2]\) \(28311552\) \(3.3002\)  

Rank

sage: E.rank()
 

The elliptic curves in class 235200qq have rank \(1\).

Complex multiplication

The elliptic curves in class 235200qq do not have complex multiplication.

Modular form 235200.2.a.qq

sage: E.q_eigenform(10)
 
\(q + q^{3} + q^{9} - 4 q^{11} + 2 q^{13} - 2 q^{17} + 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.