Show commands:
SageMath
E = EllipticCurve("rx1")
E.isogeny_class()
Elliptic curves in class 235200rx
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
235200.rx2 | 235200rx1 | \([0, 1, 0, -45733, 3097163]\) | \(16384/3\) | \(1936973136000000\) | \([2]\) | \(1376256\) | \(1.6519\) | \(\Gamma_0(N)\)-optimal |
235200.rx1 | 235200rx2 | \([0, 1, 0, -217233, -36176337]\) | \(109744/9\) | \(92974710528000000\) | \([2]\) | \(2752512\) | \(1.9985\) |
Rank
sage: E.rank()
The elliptic curves in class 235200rx have rank \(1\).
Complex multiplication
The elliptic curves in class 235200rx do not have complex multiplication.Modular form 235200.2.a.rx
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.