E = EllipticCurve("bc1")
E.isogeny_class()
Elliptic curves in class 23520bc
sage: E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
23520.h3 |
23520bc1 |
[0,−1,0,−43626,3411360] |
1219555693504/43758225 |
329479130433600 |
[2,2] |
73728 |
1.5559
|
Γ0(N)-optimal |
23520.h4 |
23520bc2 |
[0,−1,0,16399,12018945] |
1012048064/130203045 |
−62743584936775680 |
[2] |
147456 |
1.9025
|
|
23520.h2 |
23520bc3 |
[0,−1,0,−109776,−9315900] |
2428799546888/778248135 |
46878778795322880 |
[2] |
147456 |
1.9025
|
|
23520.h1 |
23520bc4 |
[0,−1,0,−691896,221748696] |
608119035935048/826875 |
49807880640000 |
[2] |
147456 |
1.9025
|
|
The elliptic curves in class 23520bc have
rank 1.
The elliptic curves in class 23520bc do not have complex multiplication.
sage: E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
⎝⎜⎜⎛1222214424142441⎠⎟⎟⎞
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.