Show commands:
SageMath
E = EllipticCurve("n1")
E.isogeny_class()
Elliptic curves in class 2352n
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
2352.j2 | 2352n1 | \([0, -1, 0, -457, -2960]\) | \(16384/3\) | \(1936973136\) | \([2]\) | \(1344\) | \(0.50060\) | \(\Gamma_0(N)\)-optimal |
2352.j1 | 2352n2 | \([0, -1, 0, -2172, 36828]\) | \(109744/9\) | \(92974710528\) | \([2]\) | \(2688\) | \(0.84717\) |
Rank
sage: E.rank()
The elliptic curves in class 2352n have rank \(1\).
Complex multiplication
The elliptic curves in class 2352n do not have complex multiplication.Modular form 2352.2.a.n
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.