Properties

Label 23534e
Number of curves 66
Conductor 2353423534
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("e1")
 
E.isogeny_class()
 

Elliptic curves in class 23534e

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
23534.o5 23534e1 [1,1,0,875,19817][1, 1, 0, -875, 19817] 15625/28-15625/28 133002918748-133002918748 [2][2] 2304023040 0.824700.82470 Γ0(N)\Gamma_0(N)-optimal
23534.o4 23534e2 [1,1,0,17685,897299][1, 1, 0, -17685, 897299] 128787625/98128787625/98 465510215618465510215618 [2][2] 4608046080 1.17131.1713  
23534.o6 23534e3 [1,1,0,7530,418924][1, 1, 0, 7530, -418924] 9938375/219529938375/21952 104274288298432-104274288298432 [2][2] 6912069120 1.37401.3740  
23534.o3 23534e4 [1,1,0,59710,4628148][1, 1, 0, -59710, -4628148] 4956477625/9411924956477625/941192 44707601107952724470760110795272 [2][2] 138240138240 1.72061.7206  
23534.o2 23534e5 [1,1,0,286645,59359827][1, 1, 0, -286645, -59359827] 548347731625/1835008-548347731625/1835008 8716479283068928-8716479283068928 [2][2] 207360207360 1.92331.9233  
23534.o1 23534e6 [1,1,0,4590005,3786930259][1, 1, 0, -4590005, -3786930259] 2251439055699625/250882251439055699625/25088 119170615198208119170615198208 [2][2] 414720414720 2.26992.2699  

Rank

sage: E.rank()
 

The elliptic curves in class 23534e have rank 11.

Complex multiplication

The elliptic curves in class 23534e do not have complex multiplication.

Modular form 23534.2.a.e

sage: E.q_eigenform(10)
 
qq2+2q3+q42q6q7q8+q9+2q12+4q13+q14+q166q17q182q19+O(q20)q - q^{2} + 2 q^{3} + q^{4} - 2 q^{6} - q^{7} - q^{8} + q^{9} + 2 q^{12} + 4 q^{13} + q^{14} + q^{16} - 6 q^{17} - q^{18} - 2 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1236918216318936123663216391836121896321)\left(\begin{array}{rrrrrr} 1 & 2 & 3 & 6 & 9 & 18 \\ 2 & 1 & 6 & 3 & 18 & 9 \\ 3 & 6 & 1 & 2 & 3 & 6 \\ 6 & 3 & 2 & 1 & 6 & 3 \\ 9 & 18 & 3 & 6 & 1 & 2 \\ 18 & 9 & 6 & 3 & 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.