Properties

Label 2368.p
Number of curves 11
Conductor 23682368
CM no
Rank 11

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("p1") E.isogeny_class()
 

Elliptic curves in class 2368.p

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
2368.p1 2368p1 [0,0,0,262,1630][0, 0, 0, -262, -1630] 31077609984/5065331077609984/50653 32417923241792 [][] 17281728 0.146000.14600 Γ0(N)\Gamma_0(N)-optimal

Rank

Copy content sage:E.rank()
 

The elliptic curve 2368.p1 has rank 11.

L-function data

 
Bad L-factors:
Prime L-Factor
2211
37371T1 - T
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
33 13T+3T2 1 - 3 T + 3 T^{2} 1.3.ad
55 1+4T+5T2 1 + 4 T + 5 T^{2} 1.5.e
77 13T+7T2 1 - 3 T + 7 T^{2} 1.7.ad
1111 1+3T+11T2 1 + 3 T + 11 T^{2} 1.11.d
1313 1+6T+13T2 1 + 6 T + 13 T^{2} 1.13.g
1717 1+4T+17T2 1 + 4 T + 17 T^{2} 1.17.e
1919 1+6T+19T2 1 + 6 T + 19 T^{2} 1.19.g
2323 1+6T+23T2 1 + 6 T + 23 T^{2} 1.23.g
2929 14T+29T2 1 - 4 T + 29 T^{2} 1.29.ae
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 2368.p do not have complex multiplication.

Modular form 2368.2.a.p

Copy content sage:E.q_eigenform(10)
 
q+3q34q5+3q7+6q93q116q1312q154q176q19+O(q20)q + 3 q^{3} - 4 q^{5} + 3 q^{7} + 6 q^{9} - 3 q^{11} - 6 q^{13} - 12 q^{15} - 4 q^{17} - 6 q^{19} + O(q^{20}) Copy content Toggle raw display