Properties

Label 2368.p
Number of curves $1$
Conductor $2368$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("p1")
 
E.isogeny_class()
 

Elliptic curves in class 2368.p

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
2368.p1 2368p1 \([0, 0, 0, -262, -1630]\) \(31077609984/50653\) \(3241792\) \([]\) \(1728\) \(0.14600\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 2368.p1 has rank \(1\).

Complex multiplication

The elliptic curves in class 2368.p do not have complex multiplication.

Modular form 2368.2.a.p

sage: E.q_eigenform(10)
 
\(q + 3 q^{3} - 4 q^{5} + 3 q^{7} + 6 q^{9} - 3 q^{11} - 6 q^{13} - 12 q^{15} - 4 q^{17} - 6 q^{19} + O(q^{20})\) Copy content Toggle raw display