sage:E = EllipticCurve("p1")
E.isogeny_class()
Elliptic curves in class 2368.p
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
2368.p1 |
2368p1 |
[0,0,0,−262,−1630] |
31077609984/50653 |
3241792 |
[] |
1728 |
0.14600
|
Γ0(N)-optimal |
sage:E.rank()
The elliptic curve 2368.p1 has
rank 1.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1 |
37 | 1−T |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
3 |
1−3T+3T2 |
1.3.ad
|
5 |
1+4T+5T2 |
1.5.e
|
7 |
1−3T+7T2 |
1.7.ad
|
11 |
1+3T+11T2 |
1.11.d
|
13 |
1+6T+13T2 |
1.13.g
|
17 |
1+4T+17T2 |
1.17.e
|
19 |
1+6T+19T2 |
1.19.g
|
23 |
1+6T+23T2 |
1.23.g
|
29 |
1−4T+29T2 |
1.29.ae
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 2368.p do not have complex multiplication.
sage:E.q_eigenform(10)