Properties

Label 2368k
Number of curves 11
Conductor 23682368
CM no
Rank 00

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("k1")
 
E.isogeny_class()
 

Elliptic curves in class 2368k

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
2368.f1 2368k1 [0,1,0,133,547][0, -1, 0, -133, -547] 16000000/3716000000/37 606208606208 [][] 256256 0.0095941-0.0095941 Γ0(N)\Gamma_0(N)-optimal

Rank

sage: E.rank()
 

The elliptic curve 2368k1 has rank 00.

Complex multiplication

The elliptic curves in class 2368k do not have complex multiplication.

Modular form 2368.2.a.k

sage: E.q_eigenform(10)
 
qq3+3q72q93q11+2q172q19+O(q20)q - q^{3} + 3 q^{7} - 2 q^{9} - 3 q^{11} + 2 q^{17} - 2 q^{19} + O(q^{20}) Copy content Toggle raw display