Properties

Label 2368l
Number of curves $1$
Conductor $2368$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("l1")
 
E.isogeny_class()
 

Elliptic curves in class 2368l

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
2368.h1 2368l1 \([0, -1, 0, -21, 13]\) \(65536/37\) \(606208\) \([]\) \(384\) \(-0.20039\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 2368l1 has rank \(0\).

Complex multiplication

The elliptic curves in class 2368l do not have complex multiplication.

Modular form 2368.2.a.l

sage: E.q_eigenform(10)
 
\(q - q^{3} + 4 q^{5} + 3 q^{7} - 2 q^{9} + 5 q^{11} - 4 q^{15} - 6 q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display