Properties

Label 2368l
Number of curves 11
Conductor 23682368
CM no
Rank 00

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("l1")
 
E.isogeny_class()
 

Elliptic curves in class 2368l

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
2368.h1 2368l1 [0,1,0,21,13][0, -1, 0, -21, 13] 65536/3765536/37 606208606208 [][] 384384 0.20039-0.20039 Γ0(N)\Gamma_0(N)-optimal

Rank

sage: E.rank()
 

The elliptic curve 2368l1 has rank 00.

Complex multiplication

The elliptic curves in class 2368l do not have complex multiplication.

Modular form 2368.2.a.l

sage: E.q_eigenform(10)
 
qq3+4q5+3q72q9+5q114q156q17+2q19+O(q20)q - q^{3} + 4 q^{5} + 3 q^{7} - 2 q^{9} + 5 q^{11} - 4 q^{15} - 6 q^{17} + 2 q^{19} + O(q^{20}) Copy content Toggle raw display