Properties

Label 23805t
Number of curves 88
Conductor 2380523805
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("t1")
 
E.isogeny_class()
 

Elliptic curves in class 23805t

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
23805.s7 23805t1 [1,1,0,99,61240][1, -1, 0, -99, 61240] 1/15-1/15 1618772446215-1618772446215 [2][2] 2534425344 1.02161.0216 Γ0(N)\Gamma_0(N)-optimal
23805.s6 23805t2 [1,1,0,23904,1408603][1, -1, 0, -23904, 1408603] 13997521/22513997521/225 2428158669322524281586693225 [2,2][2, 2] 5068850688 1.36821.3682  
23805.s5 23805t3 [1,1,0,47709,1843160][1, -1, 0, -47709, -1843160] 111284641/50625111284641/50625 54633570059756255463357005975625 [2,2][2, 2] 101376101376 1.71481.7148  
23805.s4 23805t4 [1,1,0,380979,90605938][1, -1, 0, -380979, 90605938] 56667352321/1556667352321/15 16187724462151618772446215 [2][2] 101376101376 1.71481.7148  
23805.s8 23805t5 [1,1,0,166536,13969427][1, -1, 0, 166536, -13969427] 4733169839/35156254733169839/3515625 379399792081640625-379399792081640625 [2][2] 202752202752 2.06132.0613  
23805.s2 23805t6 [1,1,0,642834,198115385][1, -1, 0, -642834, -198115385] 272223782641/164025272223782641/164025 1770127669936102517701276699361025 [2,2][2, 2] 202752202752 2.06132.0613  
23805.s3 23805t7 [1,1,0,523809,273839090][1, -1, 0, -523809, -273839090] 147281603041/215233605-147281603041/215233605 23227615284901537005-23227615284901537005 [2][2] 405504405504 2.40792.4079  
23805.s1 23805t8 [1,1,0,10283859,12690955580][1, -1, 0, -10283859, -12690955580] 1114544804970241/4051114544804970241/405 4370685604780543706856047805 [2][2] 405504405504 2.40792.4079  

Rank

sage: E.rank()
 

The elliptic curves in class 23805t have rank 00.

Complex multiplication

The elliptic curves in class 23805t do not have complex multiplication.

Modular form 23805.2.a.t

sage: E.q_eigenform(10)
 
q+q2q4+q53q8+q104q112q13q16+2q174q19+O(q20)q + q^{2} - q^{4} + q^{5} - 3 q^{8} + q^{10} - 4 q^{11} - 2 q^{13} - q^{16} + 2 q^{17} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(124488161621224488421422444241881616842814888428412216841682141684168241)\left(\begin{array}{rrrrrrrr} 1 & 2 & 4 & 4 & 8 & 8 & 16 & 16 \\ 2 & 1 & 2 & 2 & 4 & 4 & 8 & 8 \\ 4 & 2 & 1 & 4 & 2 & 2 & 4 & 4 \\ 4 & 2 & 4 & 1 & 8 & 8 & 16 & 16 \\ 8 & 4 & 2 & 8 & 1 & 4 & 8 & 8 \\ 8 & 4 & 2 & 8 & 4 & 1 & 2 & 2 \\ 16 & 8 & 4 & 16 & 8 & 2 & 1 & 4 \\ 16 & 8 & 4 & 16 & 8 & 2 & 4 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.