E = EllipticCurve("j1")
E.isogeny_class()
Elliptic curves in class 2400.j
sage: E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
2400.j1 |
2400r3 |
[0,−1,0,−2033,35937] |
14526784/15 |
960000000 |
[4] |
1536 |
0.64145
|
|
2400.j2 |
2400r2 |
[0,−1,0,−1408,−19688] |
38614472/405 |
3240000000 |
[2] |
1536 |
0.64145
|
|
2400.j3 |
2400r1 |
[0,−1,0,−158,312] |
438976/225 |
225000000 |
[2,2] |
768 |
0.29488
|
Γ0(N)-optimal |
2400.j4 |
2400r4 |
[0,−1,0,592,1812] |
2863288/1875 |
−15000000000 |
[2] |
1536 |
0.64145
|
|
The elliptic curves in class 2400.j have
rank 0.
The elliptic curves in class 2400.j do not have complex multiplication.
sage: E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
⎝⎜⎜⎛1424412422124421⎠⎟⎟⎞
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.