Properties

Label 2400.j
Number of curves 44
Conductor 24002400
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("j1")
 
E.isogeny_class()
 

Elliptic curves in class 2400.j

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
2400.j1 2400r3 [0,1,0,2033,35937][0, -1, 0, -2033, 35937] 14526784/1514526784/15 960000000960000000 [4][4] 15361536 0.641450.64145  
2400.j2 2400r2 [0,1,0,1408,19688][0, -1, 0, -1408, -19688] 38614472/40538614472/405 32400000003240000000 [2][2] 15361536 0.641450.64145  
2400.j3 2400r1 [0,1,0,158,312][0, -1, 0, -158, 312] 438976/225438976/225 225000000225000000 [2,2][2, 2] 768768 0.294880.29488 Γ0(N)\Gamma_0(N)-optimal
2400.j4 2400r4 [0,1,0,592,1812][0, -1, 0, 592, 1812] 2863288/18752863288/1875 15000000000-15000000000 [2][2] 15361536 0.641450.64145  

Rank

sage: E.rank()
 

The elliptic curves in class 2400.j have rank 00.

Complex multiplication

The elliptic curves in class 2400.j do not have complex multiplication.

Modular form 2400.2.a.j

sage: E.q_eigenform(10)
 
qq3+q9+4q112q13+2q17+8q19+O(q20)q - q^{3} + q^{9} + 4 q^{11} - 2 q^{13} + 2 q^{17} + 8 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1424412422124421)\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.