Properties

Label 24200.d2
Conductor 2420024200
Discriminant 35431220003543122000
j-invariant 2048 2048
CM no
Rank 11
Torsion structure Z/2Z\Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2=x3+x2403x+1098y^2=x^3+x^2-403x+1098 Copy content Toggle raw display (homogenize, simplify)
y2z=x3+x2z403xz2+1098z3y^2z=x^3+x^2z-403xz^2+1098z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x332670x+898425y^2=x^3-32670x+898425 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, 1, 0, -403, 1098])
 
gp: E = ellinit([0, 1, 0, -403, 1098])
 
magma: E := EllipticCurve([0, 1, 0, -403, 1098]);
 
oscar: E = elliptic_curve([0, 1, 0, -403, 1098])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

ZZ/2Z\Z \oplus \Z/{2}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(73,605)(73, 605)0.840067185091848713377439457610.84006718509184871337743945761\infty
(18,0)(18, 0)0022

Integral points

(18,0) \left(18, 0\right) , (22,±58)(22,\pm 58), (29,±121)(29,\pm 121), (73,±605)(73,\pm 605) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  24200 24200  = 23521122^{3} \cdot 5^{2} \cdot 11^{2}
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  35431220003543122000 = 24531162^{4} \cdot 5^{3} \cdot 11^{6}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  2048 2048  = 2112^{11}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 0.525728414726869474974532778910.52572841472686947497453277891
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 1.3066277599674893271790395505-1.3066277599674893271790395505
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.0189752354525311.018975235452531
Szpiro ratio: σm\sigma_{m} ≈ 2.93368104841268852.9336810484126885

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 0.840067185091848713377439457610.84006718509184871337743945761
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 1.24880026126771100192403064231.2488002612677110019240306423
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 16 16  = 2222 2\cdot2\cdot2^{2}
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 22
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 4.19630448090052484017079801124.1963044809005248401707980112
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

4.196304481L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor211.2488000.84006716224.196304481\displaystyle 4.196304481 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 1.248800 \cdot 0.840067 \cdot 16}{2^2} \approx 4.196304481

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   24200.2.a.d

q2q3+2q7+q9+4q13+4q19+O(q20) q - 2 q^{3} + 2 q^{7} + q^{9} + 4 q^{13} + 4 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 10240
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 3 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 22 IIIIII additive 1 3 4 0
55 22 IIIIII additive -1 2 3 0
1111 44 I0I_0^{*} additive -1 2 6 0

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2B 16.96.3.338

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[561, 320, 560, 561], [559, 0, 0, 879], [342, 429, 55, 826], [1, 0, 176, 1], [441, 440, 440, 441], [1, 0, 320, 1], [111, 462, 528, 177], [177, 0, 0, 353], [529, 88, 748, 485], [837, 44, 748, 749], [705, 704, 176, 705], [771, 682, 154, 199]]
 
GL(2,Integers(880)).subgroup(gens)
 
Gens := [[561, 320, 560, 561], [559, 0, 0, 879], [342, 429, 55, 826], [1, 0, 176, 1], [441, 440, 440, 441], [1, 0, 320, 1], [111, 462, 528, 177], [177, 0, 0, 353], [529, 88, 748, 485], [837, 44, 748, 749], [705, 704, 176, 705], [771, 682, 154, 199]];
 
sub<GL(2,Integers(880))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 880=24511 880 = 2^{4} \cdot 5 \cdot 11 , index 384384, genus 99, and generators

(561320560561),(55900879),(34242955826),(101761),(441440440441),(103201),(111462528177),(17700353),(52988748485),(83744748749),(705704176705),(771682154199)\left(\begin{array}{rr} 561 & 320 \\ 560 & 561 \end{array}\right),\left(\begin{array}{rr} 559 & 0 \\ 0 & 879 \end{array}\right),\left(\begin{array}{rr} 342 & 429 \\ 55 & 826 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 176 & 1 \end{array}\right),\left(\begin{array}{rr} 441 & 440 \\ 440 & 441 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 320 & 1 \end{array}\right),\left(\begin{array}{rr} 111 & 462 \\ 528 & 177 \end{array}\right),\left(\begin{array}{rr} 177 & 0 \\ 0 & 353 \end{array}\right),\left(\begin{array}{rr} 529 & 88 \\ 748 & 485 \end{array}\right),\left(\begin{array}{rr} 837 & 44 \\ 748 & 749 \end{array}\right),\left(\begin{array}{rr} 705 & 704 \\ 176 & 705 \end{array}\right),\left(\begin{array}{rr} 771 & 682 \\ 154 & 199 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[880])K:=\Q(E[880]) is a degree-405504000405504000 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/880Z)\GL_2(\Z/880\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 additive 22 605=5112 605 = 5 \cdot 11^{2}
55 additive 1010 968=23112 968 = 2^{3} \cdot 11^{2}
1111 additive 6262 200=2352 200 = 2^{3} \cdot 5^{2}

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2.
Its isogeny class 24200.d consists of 2 curves linked by isogenies of degree 2.

Twists

The minimal quadratic twist of this elliptic curve is 200.b2, its twist by 11-11.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/2Z\cong \Z/{2}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(5)\Q(\sqrt{5}) Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
44 4.4.15125.1 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 8.0.937024000000.21 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 8.4.58564000000.4 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
88 deg 8 Z/6Z\Z/6\Z not in database
1616 deg 16 Z/4ZZ/8Z\Z/4\Z \oplus \Z/8\Z not in database
1616 deg 16 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type add ord add ord add ord ss ord ord ord ss ord ord ord ord
λ\lambda-invariant(s) - 1 - 1 - 1 1,1 1 1 1 1,1 1 1 1 1
μ\mu-invariant(s) - 0 - 0 - 0 0,0 0 0 0 0,0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

Note: pp-adic regulator data only exists for primes p5p\ge 5 of good ordinary reduction.