y 2 = x 3 − 1134435 x + 452080226 y^2=x^3-1134435x+452080226 y 2 = x 3 − 1 1 3 4 4 3 5 x + 4 5 2 0 8 0 2 2 6
(homogenize , simplify )
y 2 z = x 3 − 1134435 x z 2 + 452080226 z 3 y^2z=x^3-1134435xz^2+452080226z^3 y 2 z = x 3 − 1 1 3 4 4 3 5 x z 2 + 4 5 2 0 8 0 2 2 6 z 3
(dehomogenize , simplify )
y 2 = x 3 − 1134435 x + 452080226 y^2=x^3-1134435x+452080226 y 2 = x 3 − 1 1 3 4 4 3 5 x + 4 5 2 0 8 0 2 2 6
(homogenize , minimize )
sage: E = EllipticCurve([0, 0, 0, -1134435, 452080226])
gp: E = ellinit([0, 0, 0, -1134435, 452080226])
magma: E := EllipticCurve([0, 0, 0, -1134435, 452080226]);
oscar: E = elliptic_curve([0, 0, 0, -1134435, 452080226])
sage: E.short_weierstrass_model()
magma: WeierstrassModel(E);
oscar: short_weierstrass_model(E)
Z ⊕ Z / 2 Z \Z \oplus \Z/{2}\Z Z ⊕ Z / 2 Z
magma: MordellWeilGroup(E);
P P P h ^ ( P ) \hat{h}(P) h ^ ( P ) Order
( 5527 / 121 , 26631882 / 1331 ) (5527/121, 26631882/1331) ( 5 5 2 7 / 1 2 1 , 2 6 6 3 1 8 8 2 / 1 3 3 1 ) 9.8921919850983025847126501745 9.8921919850983025847126501745 9 . 8 9 2 1 9 1 9 8 5 0 9 8 3 0 2 5 8 4 7 1 2 6 5 0 1 7 4 5 ∞ \infty ∞
( 529 , 0 ) (529, 0) ( 5 2 9 , 0 ) 0 0 0 2 2 2
( 529 , 0 ) \left(529, 0\right) ( 5 2 9 , 0 )
sage: E.integral_points()
magma: IntegralPoints(E);
Invariants
Conductor :
N N N
=
243504 243504 2 4 3 5 0 4 = 2 4 ⋅ 3 2 ⋅ 19 ⋅ 89 2^{4} \cdot 3^{2} \cdot 19 \cdot 89 2 4 ⋅ 3 2 ⋅ 1 9 ⋅ 8 9
sage: E.conductor().factor()
Discriminant :
Δ \Delta Δ
=
5146325626197639168 5146325626197639168 5 1 4 6 3 2 5 6 2 6 1 9 7 6 3 9 1 6 8 = 2 34 ⋅ 3 11 ⋅ 19 ⋅ 89 2^{34} \cdot 3^{11} \cdot 19 \cdot 89 2 3 4 ⋅ 3 1 1 ⋅ 1 9 ⋅ 8 9
sage: E.discriminant().factor()
j-invariant :
j j j
=
54072330385398625 1723494039552 \frac{54072330385398625}{1723494039552} 1 7 2 3 4 9 4 0 3 9 5 5 2 5 4 0 7 2 3 3 0 3 8 5 3 9 8 6 2 5 = 2 − 22 ⋅ 3 − 5 ⋅ 5 3 ⋅ 1 9 − 1 ⋅ 8 9 − 1 ⋅ 7562 9 3 2^{-22} \cdot 3^{-5} \cdot 5^{3} \cdot 19^{-1} \cdot 89^{-1} \cdot 75629^{3} 2 − 2 2 ⋅ 3 − 5 ⋅ 5 3 ⋅ 1 9 − 1 ⋅ 8 9 − 1 ⋅ 7 5 6 2 9 3
sage: E.j_invariant().factor()
Endomorphism ring :
E n d ( E ) \mathrm{End}(E) E n d ( E ) = Z \Z Z
Geometric endomorphism ring :
E n d ( E Q ‾ ) \mathrm{End}(E_{\overline{\Q}}) E n d ( E Q )
=
Z \Z Z
(no potential complex multiplication )
magma: HasComplexMultiplication(E);
Sato-Tate group :
S T ( E ) \mathrm{ST}(E) S T ( E ) = S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
Faltings height :
h F a l t i n g s h_{\mathrm{Faltings}} h F a l t i n g s ≈ 2.3648182073530460410121016531 2.3648182073530460410121016531 2 . 3 6 4 8 1 8 2 0 7 3 5 3 0 4 6 0 4 1 0 1 2 1 0 1 6 5 3 1
magma: FaltingsHeight(E);
oscar: faltings_height(E)
Stable Faltings height :
h s t a b l e h_{\mathrm{stable}} h s t a b l e ≈ 1.1223648824590458858972469132 1.1223648824590458858972469132 1 . 1 2 2 3 6 4 8 8 2 4 5 9 0 4 5 8 8 5 8 9 7 2 4 6 9 1 3 2
magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
a b c abc a b c quality :
Q Q Q ≈ 1.0094449991569043 1.0094449991569043 1 . 0 0 9 4 4 4 9 9 9 1 5 6 9 0 4 3
Szpiro ratio :
σ m \sigma_{m} σ m ≈ 4.3085558864621225 4.3085558864621225 4 . 3 0 8 5 5 5 8 8 6 4 6 2 1 2 2 5
Analytic rank :
r a n r_{\mathrm{an}} r a n = 1 1 1
Mordell-Weil rank :
r r r = 1 1 1
gp: [lower,upper] = ellrank(E)
Regulator :
R e g ( E / Q ) \mathrm{Reg}(E/\Q) R e g ( E / Q ) ≈ 9.8921919850983025847126501745 9.8921919850983025847126501745 9 . 8 9 2 1 9 1 9 8 5 0 9 8 3 0 2 5 8 4 7 1 2 6 5 0 1 7 4 5
G = E.gen \\ if available
matdet(ellheightmatrix(E,G))
Real period :
Ω \Omega Ω ≈ 0.24096418721076868350766644308 0.24096418721076868350766644308 0 . 2 4 0 9 6 4 1 8 7 2 1 0 7 6 8 6 8 3 5 0 7 6 6 6 4 4 3 0 8
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
Tamagawa product :
∏ p c p \prod_{p}c_p ∏ p c p = 16 16 1 6
= 2 2 ⋅ 2 2 ⋅ 1 ⋅ 1 2^{2}\cdot2^{2}\cdot1\cdot1 2 2 ⋅ 2 2 ⋅ 1 ⋅ 1
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
Torsion order :
# E ( Q ) t o r \#E(\Q)_{\mathrm{tor}} # E ( Q ) t o r = 2 2 2
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
Special value :
L ′ ( E , 1 ) L'(E,1) L ′ ( E , 1 ) ≈ 9.5346560056883715164381646342 9.5346560056883715164381646342 9 . 5 3 4 6 5 6 0 0 5 6 8 8 3 7 1 5 1 6 4 3 8 1 6 4 6 3 4 2
r = E.rank();
E.lseries().dokchitser().derivative(1,r)/r.factorial()
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
Analytic order of Ш :
Шa n {}_{\mathrm{an}} a n
≈
1 1 1
(rounded )
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
9.534656006 ≈ L ′ ( E , 1 ) = # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p # E ( Q ) t o r 2 ≈ 1 ⋅ 0.240964 ⋅ 9.892192 ⋅ 16 2 2 ≈ 9.534656006 \displaystyle 9.534656006 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.240964 \cdot 9.892192 \cdot 16}{2^2} \approx 9.534656006 9 . 5 3 4 6 5 6 0 0 6 ≈ L ′ ( E , 1 ) = # E ( Q ) t o r 2 # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p ≈ 2 2 1 ⋅ 0 . 2 4 0 9 6 4 ⋅ 9 . 8 9 2 1 9 2 ⋅ 1 6 ≈ 9 . 5 3 4 6 5 6 0 0 6
# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
Modular form
243504.2.a.bo
q + 2 q 7 − 4 q 11 + 6 q 13 + 2 q 17 − q 19 + O ( q 20 ) q + 2 q^{7} - 4 q^{11} + 6 q^{13} + 2 q^{17} - q^{19} + O(q^{20}) q + 2 q 7 − 4 q 1 1 + 6 q 1 3 + 2 q 1 7 − q 1 9 + O ( q 2 0 )
\\ actual modular form, use for small N
[mf,F] = mffromell(E)
Ser(mfcoefs(mf,20),q)
\\ or just the series
Ser(ellan(E,20),q)*q
For more coefficients, see the Downloads section to the right.
This elliptic curve is not semistable .
There
are 4 primes p p p
of bad reduction :
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
The ℓ \ell ℓ -adic Galois representation has maximal image
for all primes ℓ \ell ℓ except those listed in the table below.
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
gens = [[25369, 15220, 5072, 35511], [27058, 1, 27055, 0], [1, 2, 2, 5], [10682, 1, 14951, 0], [25994, 1, 7295, 0], [1, 4, 0, 1], [20293, 4, 2, 9], [40581, 4, 40580, 5], [1, 0, 4, 1], [3, 4, 8, 11]]
GL(2,Integers(40584)).subgroup(gens)
Gens := [[25369, 15220, 5072, 35511], [27058, 1, 27055, 0], [1, 2, 2, 5], [10682, 1, 14951, 0], [25994, 1, 7295, 0], [1, 4, 0, 1], [20293, 4, 2, 9], [40581, 4, 40580, 5], [1, 0, 4, 1], [3, 4, 8, 11]];
sub<GL(2,Integers(40584))|Gens>;
The image H : = ρ E ( Gal ( Q ‾ / Q ) ) H:=\rho_E(\Gal(\overline{\Q}/\Q)) H : = ρ E ( G a l ( Q / Q ) ) of the adelic Galois representation has
level 40584 = 2 3 ⋅ 3 ⋅ 19 ⋅ 89 40584 = 2^{3} \cdot 3 \cdot 19 \cdot 89 4 0 5 8 4 = 2 3 ⋅ 3 ⋅ 1 9 ⋅ 8 9 , index 12 12 1 2 , genus 0 0 0 , and generators
( 25369 15220 5072 35511 ) , ( 27058 1 27055 0 ) , ( 1 2 2 5 ) , ( 10682 1 14951 0 ) , ( 25994 1 7295 0 ) , ( 1 4 0 1 ) , ( 20293 4 2 9 ) , ( 40581 4 40580 5 ) , ( 1 0 4 1 ) , ( 3 4 8 11 ) \left(\begin{array}{rr}
25369 & 15220 \\
5072 & 35511
\end{array}\right),\left(\begin{array}{rr}
27058 & 1 \\
27055 & 0
\end{array}\right),\left(\begin{array}{rr}
1 & 2 \\
2 & 5
\end{array}\right),\left(\begin{array}{rr}
10682 & 1 \\
14951 & 0
\end{array}\right),\left(\begin{array}{rr}
25994 & 1 \\
7295 & 0
\end{array}\right),\left(\begin{array}{rr}
1 & 4 \\
0 & 1
\end{array}\right),\left(\begin{array}{rr}
20293 & 4 \\
2 & 9
\end{array}\right),\left(\begin{array}{rr}
40581 & 4 \\
40580 & 5
\end{array}\right),\left(\begin{array}{rr}
1 & 0 \\
4 & 1
\end{array}\right),\left(\begin{array}{rr}
3 & 4 \\
8 & 11
\end{array}\right) ( 2 5 3 6 9 5 0 7 2 1 5 2 2 0 3 5 5 1 1 ) , ( 2 7 0 5 8 2 7 0 5 5 1 0 ) , ( 1 2 2 5 ) , ( 1 0 6 8 2 1 4 9 5 1 1 0 ) , ( 2 5 9 9 4 7 2 9 5 1 0 ) , ( 1 0 4 1 ) , ( 2 0 2 9 3 2 4 9 ) , ( 4 0 5 8 1 4 0 5 8 0 4 5 ) , ( 1 4 0 1 ) , ( 3 8 4 1 1 ) .
The torsion field K : = Q ( E [ 40584 ] ) K:=\Q(E[40584]) K : = Q ( E [ 4 0 5 8 4 ] ) is a degree-46922125226803200 46922125226803200 4 6 9 2 2 1 2 5 2 2 6 8 0 3 2 0 0 Galois extension of Q \Q Q with Gal ( K / Q ) \Gal(K/\Q) G a l ( K / Q ) isomorphic to the projection of H H H to GL 2 ( Z / 40584 Z ) \GL_2(\Z/40584\Z) GL 2 ( Z / 4 0 5 8 4 Z ) .
The table below list all primes ℓ \ell ℓ for which the Serre invariants associated to the mod-ℓ \ell ℓ Galois representation are exceptional.
ℓ \ell ℓ
Reduction type
Serre weight
Serre conductor
2 2 2
additive
2 2 2
15219 = 3 2 ⋅ 19 ⋅ 89 15219 = 3^{2} \cdot 19 \cdot 89 1 5 2 1 9 = 3 2 ⋅ 1 9 ⋅ 8 9
3 3 3
additive
8 8 8
27056 = 2 4 ⋅ 19 ⋅ 89 27056 = 2^{4} \cdot 19 \cdot 89 2 7 0 5 6 = 2 4 ⋅ 1 9 ⋅ 8 9
19 19 1 9
nonsplit multiplicative
20 20 2 0
12816 = 2 4 ⋅ 3 2 ⋅ 89 12816 = 2^{4} \cdot 3^{2} \cdot 89 1 2 8 1 6 = 2 4 ⋅ 3 2 ⋅ 8 9
89 89 8 9
nonsplit multiplicative
90 90 9 0
2736 = 2 4 ⋅ 3 2 ⋅ 19 2736 = 2^{4} \cdot 3^{2} \cdot 19 2 7 3 6 = 2 4 ⋅ 3 2 ⋅ 1 9
This curve has non-trivial cyclic isogenies of degree d d d for d = d= d =
2.
Its isogeny class 243504.bo
consists of 2 curves linked by isogenies of
degree 2.
The minimal quadratic twist of this elliptic curve is
10146.o1 , its twist by 12 12 1 2 .
The number fields K K K of degree less than 24 such that
E ( K ) t o r s E(K)_{\rm tors} E ( K ) t o r s is strictly larger than E ( Q ) t o r s E(\Q)_{\rm tors} E ( Q ) t o r s
≅ Z / 2 Z \cong \Z/{2}\Z ≅ Z / 2 Z
are as follows:
[ K : Q ] [K:\Q] [ K : Q ]
K K K
E ( K ) t o r s E(K)_{\rm tors} E ( K ) t o r s
Base change curve
2 2 2
Q ( 5073 ) \Q(\sqrt{5073}) Q ( 5 0 7 3 )
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z \oplus \Z/2\Z Z / 2 Z ⊕ Z / 2 Z
not in database
4 4 4
4.0.1298688.4
Z / 4 Z \Z/4\Z Z / 4 Z
not in database
8 8 8
deg 8
Z / 2 Z ⊕ Z / 4 Z \Z/2\Z \oplus \Z/4\Z Z / 2 Z ⊕ Z / 4 Z
not in database
8 8 8
deg 8
Z / 2 Z ⊕ Z / 4 Z \Z/2\Z \oplus \Z/4\Z Z / 2 Z ⊕ Z / 4 Z
not in database
8 8 8
deg 8
Z / 6 Z \Z/6\Z Z / 6 Z
not in database
16 16 1 6
deg 16
Z / 8 Z \Z/8\Z Z / 8 Z
not in database
16 16 1 6
deg 16
Z / 2 Z ⊕ Z / 6 Z \Z/2\Z \oplus \Z/6\Z Z / 2 Z ⊕ Z / 6 Z
not in database
We only show fields where the torsion growth is primitive .
For fields not in the database, click on the degree shown to reveal the defining polynomial.
No Iwasawa invariant data is available for this curve.
p p p -adic regulators
p p p -adic regulators are not yet computed for curves that are not Γ 0 \Gamma_0 Γ 0 -optimal.