Properties

Label 243504.bo1
Conductor 243504243504
Discriminant 5.146×10185.146\times 10^{18}
j-invariant 540723303853986251723494039552 \frac{54072330385398625}{1723494039552}
CM no
Rank 11
Torsion structure Z/2Z\Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2=x31134435x+452080226y^2=x^3-1134435x+452080226 Copy content Toggle raw display (homogenize, simplify)
y2z=x31134435xz2+452080226z3y^2z=x^3-1134435xz^2+452080226z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x31134435x+452080226y^2=x^3-1134435x+452080226 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, 0, 0, -1134435, 452080226])
 
gp: E = ellinit([0, 0, 0, -1134435, 452080226])
 
magma: E := EllipticCurve([0, 0, 0, -1134435, 452080226]);
 
oscar: E = elliptic_curve([0, 0, 0, -1134435, 452080226])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

ZZ/2Z\Z \oplus \Z/{2}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(5527/121,26631882/1331)(5527/121, 26631882/1331)9.89219198509830258471265017459.8921919850983025847126501745\infty
(529,0)(529, 0)0022

Integral points

(529,0) \left(529, 0\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  243504 243504  = 243219892^{4} \cdot 3^{2} \cdot 19 \cdot 89
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  51463256261976391685146325626197639168 = 23431119892^{34} \cdot 3^{11} \cdot 19 \cdot 89
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  540723303853986251723494039552 \frac{54072330385398625}{1723494039552}  = 22235531918917562932^{-22} \cdot 3^{-5} \cdot 5^{3} \cdot 19^{-1} \cdot 89^{-1} \cdot 75629^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 2.36481820735304604101210165312.3648182073530460410121016531
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 1.12236488245904588589724691321.1223648824590458858972469132
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.00944499915690431.0094449991569043
Szpiro ratio: σm\sigma_{m} ≈ 4.30855588646212254.3085558864621225

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 9.89219198509830258471265017459.8921919850983025847126501745
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.240964187210768683507666443080.24096418721076868350766644308
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 16 16  = 222211 2^{2}\cdot2^{2}\cdot1\cdot1
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 22
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 9.53465600568837151643816463429.5346560056883715164381646342
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

9.534656006L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.2409649.89219216229.534656006\displaystyle 9.534656006 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.240964 \cdot 9.892192 \cdot 16}{2^2} \approx 9.534656006

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 243504.2.a.bo

q+2q74q11+6q13+2q17q19+O(q20) q + 2 q^{7} - 4 q^{11} + 6 q^{13} + 2 q^{17} - q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 4055040
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 4 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 44 I26I_{26}^{*} additive -1 4 34 22
33 44 I5I_{5}^{*} additive -1 2 11 5
1919 11 I1I_{1} nonsplit multiplicative 1 1 1 1
8989 11 I1I_{1} nonsplit multiplicative 1 1 1 1

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2B 8.6.0.4

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[25369, 15220, 5072, 35511], [27058, 1, 27055, 0], [1, 2, 2, 5], [10682, 1, 14951, 0], [25994, 1, 7295, 0], [1, 4, 0, 1], [20293, 4, 2, 9], [40581, 4, 40580, 5], [1, 0, 4, 1], [3, 4, 8, 11]]
 
GL(2,Integers(40584)).subgroup(gens)
 
Gens := [[25369, 15220, 5072, 35511], [27058, 1, 27055, 0], [1, 2, 2, 5], [10682, 1, 14951, 0], [25994, 1, 7295, 0], [1, 4, 0, 1], [20293, 4, 2, 9], [40581, 4, 40580, 5], [1, 0, 4, 1], [3, 4, 8, 11]];
 
sub<GL(2,Integers(40584))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 40584=2331989 40584 = 2^{3} \cdot 3 \cdot 19 \cdot 89 , index 1212, genus 00, and generators

(2536915220507235511),(270581270550),(1225),(106821149510),(25994172950),(1401),(20293429),(405814405805),(1041),(34811)\left(\begin{array}{rr} 25369 & 15220 \\ 5072 & 35511 \end{array}\right),\left(\begin{array}{rr} 27058 & 1 \\ 27055 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 10682 & 1 \\ 14951 & 0 \end{array}\right),\left(\begin{array}{rr} 25994 & 1 \\ 7295 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 20293 & 4 \\ 2 & 9 \end{array}\right),\left(\begin{array}{rr} 40581 & 4 \\ 40580 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[40584])K:=\Q(E[40584]) is a degree-4692212522680320046922125226803200 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/40584Z)\GL_2(\Z/40584\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 additive 22 15219=321989 15219 = 3^{2} \cdot 19 \cdot 89
33 additive 88 27056=241989 27056 = 2^{4} \cdot 19 \cdot 89
1919 nonsplit multiplicative 2020 12816=243289 12816 = 2^{4} \cdot 3^{2} \cdot 89
8989 nonsplit multiplicative 9090 2736=243219 2736 = 2^{4} \cdot 3^{2} \cdot 19

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2.
Its isogeny class 243504.bo consists of 2 curves linked by isogenies of degree 2.

Twists

The minimal quadratic twist of this elliptic curve is 10146.o1, its twist by 1212.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/2Z\cong \Z/{2}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(5073)\Q(\sqrt{5073}) Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
44 4.0.1298688.4 Z/4Z\Z/4\Z not in database
88 deg 8 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 deg 8 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 deg 8 Z/6Z\Z/6\Z not in database
1616 deg 16 Z/8Z\Z/8\Z not in database
1616 deg 16 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

No Iwasawa invariant data is available for this curve.

pp-adic regulators

pp-adic regulators are not yet computed for curves that are not Γ0\Gamma_0-optimal.