Show commands:
SageMath
E = EllipticCurve("iu1")
E.isogeny_class()
Elliptic curves in class 244800.iu
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
244800.iu1 | 244800iu3 | \([0, 0, 0, -64886700, 201177326000]\) | \(40472803590982276/281883375\) | \(210424811904000000000\) | \([2]\) | \(21233664\) | \(3.0794\) | |
244800.iu2 | 244800iu2 | \([0, 0, 0, -4136700, 3010826000]\) | \(41948679809104/3291890625\) | \(614345796000000000000\) | \([2, 2]\) | \(10616832\) | \(2.7329\) | |
244800.iu3 | 244800iu1 | \([0, 0, 0, -856200, -249991000]\) | \(5951163357184/1129312125\) | \(13172296626000000000\) | \([2]\) | \(5308416\) | \(2.3863\) | \(\Gamma_0(N)\)-optimal |
244800.iu4 | 244800iu4 | \([0, 0, 0, 4125300, 13536614000]\) | \(10400706415004/112060546875\) | \(-83652750000000000000000\) | \([2]\) | \(21233664\) | \(3.0794\) |
Rank
sage: E.rank()
The elliptic curves in class 244800.iu have rank \(2\).
Complex multiplication
The elliptic curves in class 244800.iu do not have complex multiplication.Modular form 244800.2.a.iu
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.