Properties

Label 244800.iu
Number of curves $4$
Conductor $244800$
CM no
Rank $2$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("iu1")
 
E.isogeny_class()
 

Elliptic curves in class 244800.iu

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
244800.iu1 244800iu3 \([0, 0, 0, -64886700, 201177326000]\) \(40472803590982276/281883375\) \(210424811904000000000\) \([2]\) \(21233664\) \(3.0794\)  
244800.iu2 244800iu2 \([0, 0, 0, -4136700, 3010826000]\) \(41948679809104/3291890625\) \(614345796000000000000\) \([2, 2]\) \(10616832\) \(2.7329\)  
244800.iu3 244800iu1 \([0, 0, 0, -856200, -249991000]\) \(5951163357184/1129312125\) \(13172296626000000000\) \([2]\) \(5308416\) \(2.3863\) \(\Gamma_0(N)\)-optimal
244800.iu4 244800iu4 \([0, 0, 0, 4125300, 13536614000]\) \(10400706415004/112060546875\) \(-83652750000000000000000\) \([2]\) \(21233664\) \(3.0794\)  

Rank

sage: E.rank()
 

The elliptic curves in class 244800.iu have rank \(2\).

Complex multiplication

The elliptic curves in class 244800.iu do not have complex multiplication.

Modular form 244800.2.a.iu

sage: E.q_eigenform(10)
 
\(q - 4 q^{11} + 6 q^{13} - q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.