Properties

Label 244800bj
Number of curves $4$
Conductor $244800$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("bj1")
 
E.isogeny_class()
 

Elliptic curves in class 244800bj

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
244800.bj4 244800bj1 \([0, 0, 0, -18212700, 908139854000]\) \(-3579968623693264/1906997690433375\) \(-355891536979438176000000000\) \([2]\) \(82575360\) \(3.7738\) \(\Gamma_0(N)\)-optimal
244800.bj3 244800bj2 \([0, 0, 0, -1521590700, 22607897906000]\) \(521902963282042184836/6241849278890625\) \(4659515519294736000000000000\) \([2, 2]\) \(165150720\) \(4.1204\)  
244800.bj1 244800bj3 \([0, 0, 0, -24275138700, 1455762872234000]\) \(1059623036730633329075378/154307373046875\) \(230379673500000000000000000\) \([2]\) \(330301440\) \(4.4670\)  
244800.bj2 244800bj4 \([0, 0, 0, -2822090700, -21762561094000]\) \(1664865424893526702418/826424127435466125\) \(1233844610868131440896000000000\) \([2]\) \(330301440\) \(4.4670\)  

Rank

sage: E.rank()
 

The elliptic curves in class 244800bj have rank \(1\).

Complex multiplication

The elliptic curves in class 244800bj do not have complex multiplication.

Modular form 244800.2.a.bj

sage: E.q_eigenform(10)
 
\(q - 4 q^{7} + 2 q^{13} - q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.