sage:E = EllipticCurve("bj1")
E.isogeny_class()
Elliptic curves in class 244800bj
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
244800.bj4 |
244800bj1 |
[0,0,0,−18212700,908139854000] |
−3579968623693264/1906997690433375 |
−355891536979438176000000000 |
[2] |
82575360 |
3.7738
|
Γ0(N)-optimal |
244800.bj3 |
244800bj2 |
[0,0,0,−1521590700,22607897906000] |
521902963282042184836/6241849278890625 |
4659515519294736000000000000 |
[2,2] |
165150720 |
4.1204
|
|
244800.bj1 |
244800bj3 |
[0,0,0,−24275138700,1455762872234000] |
1059623036730633329075378/154307373046875 |
230379673500000000000000000 |
[2] |
330301440 |
4.4670
|
|
244800.bj2 |
244800bj4 |
[0,0,0,−2822090700,−21762561094000] |
1664865424893526702418/826424127435466125 |
1233844610868131440896000000000 |
[2] |
330301440 |
4.4670
|
|
sage:E.rank()
The elliptic curves in class 244800bj have
rank 1.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1 |
3 | 1 |
5 | 1 |
17 | 1+T |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
7 |
1+4T+7T2 |
1.7.e
|
11 |
1+11T2 |
1.11.a
|
13 |
1−2T+13T2 |
1.13.ac
|
19 |
1−4T+19T2 |
1.19.ae
|
23 |
1+8T+23T2 |
1.23.i
|
29 |
1+6T+29T2 |
1.29.g
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 244800bj do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
⎝⎜⎜⎛1244212242144241⎠⎟⎟⎞
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.