Properties

Label 244800ip
Number of curves 66
Conductor 244800244800
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("ip1")
 
E.isogeny_class()
 

Elliptic curves in class 244800ip

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
244800.ip5 244800ip1 [0,0,0,489900,122402000][0, 0, 0, -489900, -122402000] 4354703137/3525124354703137/352512 10525951918080000001052595191808000000 [2][2] 31457283145728 2.20112.2011 Γ0(N)\Gamma_0(N)-optimal
244800.ip4 244800ip2 [0,0,0,1641900,667870000][0, 0, 0, -1641900, 667870000] 163936758817/30338064163936758817/30338064 9058897369497600000090588973694976000000 [2,2][2, 2] 62914566291456 2.54772.5477  
244800.ip2 244800ip3 [0,0,0,24969900,48023710000][0, 0, 0, -24969900, 48023710000] 576615941610337/27060804576615941610337/27060804 8080312777113600000080803127771136000000 [2,2][2, 2] 1258291212582912 2.89422.8942  
244800.ip6 244800ip4 [0,0,0,3254100,3889438000][0, 0, 0, 3254100, 3889438000] 1276229915423/29271770281276229915423/2927177028 8740503770775552000000-8740503770775552000000 [2][2] 1258291212582912 2.89422.8942  
244800.ip1 244800ip5 [0,0,0,399513900,3073590142000][0, 0, 0, -399513900, 3073590142000] 2361739090258884097/52022361739090258884097/5202 1553308876800000015533088768000000 [2][2] 2516582425165824 3.24083.2408  
244800.ip3 244800ip6 [0,0,0,23673900,53231038000][0, 0, 0, -23673900, 53231038000] 491411892194497/125563633938-491411892194497/125563633938 374931001920724992000000-374931001920724992000000 [2][2] 2516582425165824 3.24083.2408  

Rank

sage: E.rank()
 

The elliptic curves in class 244800ip have rank 11.

Complex multiplication

The elliptic curves in class 244800ip do not have complex multiplication.

Modular form 244800.2.a.ip

sage: E.q_eigenform(10)
 
q4q112q13+q174q19+O(q20)q - 4 q^{11} - 2 q^{13} + q^{17} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(124488212244421422424188842814842841)\left(\begin{array}{rrrrrr} 1 & 2 & 4 & 4 & 8 & 8 \\ 2 & 1 & 2 & 2 & 4 & 4 \\ 4 & 2 & 1 & 4 & 2 & 2 \\ 4 & 2 & 4 & 1 & 8 & 8 \\ 8 & 4 & 2 & 8 & 1 & 4 \\ 8 & 4 & 2 & 8 & 4 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.