Properties

Label 244800ip
Number of curves $6$
Conductor $244800$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("ip1")
 
E.isogeny_class()
 

Elliptic curves in class 244800ip

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
244800.ip5 244800ip1 \([0, 0, 0, -489900, -122402000]\) \(4354703137/352512\) \(1052595191808000000\) \([2]\) \(3145728\) \(2.2011\) \(\Gamma_0(N)\)-optimal
244800.ip4 244800ip2 \([0, 0, 0, -1641900, 667870000]\) \(163936758817/30338064\) \(90588973694976000000\) \([2, 2]\) \(6291456\) \(2.5477\)  
244800.ip2 244800ip3 \([0, 0, 0, -24969900, 48023710000]\) \(576615941610337/27060804\) \(80803127771136000000\) \([2, 2]\) \(12582912\) \(2.8942\)  
244800.ip6 244800ip4 \([0, 0, 0, 3254100, 3889438000]\) \(1276229915423/2927177028\) \(-8740503770775552000000\) \([2]\) \(12582912\) \(2.8942\)  
244800.ip1 244800ip5 \([0, 0, 0, -399513900, 3073590142000]\) \(2361739090258884097/5202\) \(15533088768000000\) \([2]\) \(25165824\) \(3.2408\)  
244800.ip3 244800ip6 \([0, 0, 0, -23673900, 53231038000]\) \(-491411892194497/125563633938\) \(-374931001920724992000000\) \([2]\) \(25165824\) \(3.2408\)  

Rank

sage: E.rank()
 

The elliptic curves in class 244800ip have rank \(1\).

Complex multiplication

The elliptic curves in class 244800ip do not have complex multiplication.

Modular form 244800.2.a.ip

sage: E.q_eigenform(10)
 
\(q - 4 q^{11} - 2 q^{13} + q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrrrr} 1 & 2 & 4 & 4 & 8 & 8 \\ 2 & 1 & 2 & 2 & 4 & 4 \\ 4 & 2 & 1 & 4 & 2 & 2 \\ 4 & 2 & 4 & 1 & 8 & 8 \\ 8 & 4 & 2 & 8 & 1 & 4 \\ 8 & 4 & 2 & 8 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.