Properties

Label 245.c
Number of curves 33
Conductor 245245
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("c1")
 
E.isogeny_class()
 

Elliptic curves in class 245.c

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
245.c1 245c3 [0,1,1,6435,210006][0, -1, 1, -6435, 210006] 250523582464/13671875-250523582464/13671875 1608482421875-1608482421875 [][] 288288 1.10041.1004  
245.c2 245c1 [0,1,1,65,204][0, -1, 1, -65, -204] 262144/35-262144/35 4117715-4117715 [][] 3232 0.00180490.0018049 Γ0(N)\Gamma_0(N)-optimal
245.c3 245c2 [0,1,1,425,433][0, -1, 1, 425, 433] 71991296/4287571991296/42875 5044200875-5044200875 [][] 9696 0.551110.55111  

Rank

sage: E.rank()
 

The elliptic curves in class 245.c have rank 11.

Complex multiplication

The elliptic curves in class 245.c do not have complex multiplication.

Modular form 245.2.a.c

sage: E.q_eigenform(10)
 
qq32q4+q52q93q11+2q125q13q15+4q163q172q19+O(q20)q - q^{3} - 2 q^{4} + q^{5} - 2 q^{9} - 3 q^{11} + 2 q^{12} - 5 q^{13} - q^{15} + 4 q^{16} - 3 q^{17} - 2 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(193913331)\left(\begin{array}{rrr} 1 & 9 & 3 \\ 9 & 1 & 3 \\ 3 & 3 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.