Show commands:
SageMath
E = EllipticCurve("c1")
E.isogeny_class()
Elliptic curves in class 245.c
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
245.c1 | 245c3 | \([0, -1, 1, -6435, 210006]\) | \(-250523582464/13671875\) | \(-1608482421875\) | \([]\) | \(288\) | \(1.1004\) | |
245.c2 | 245c1 | \([0, -1, 1, -65, -204]\) | \(-262144/35\) | \(-4117715\) | \([]\) | \(32\) | \(0.0018049\) | \(\Gamma_0(N)\)-optimal |
245.c3 | 245c2 | \([0, -1, 1, 425, 433]\) | \(71991296/42875\) | \(-5044200875\) | \([]\) | \(96\) | \(0.55111\) |
Rank
sage: E.rank()
The elliptic curves in class 245.c have rank \(1\).
Complex multiplication
The elliptic curves in class 245.c do not have complex multiplication.Modular form 245.2.a.c
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrr} 1 & 9 & 3 \\ 9 & 1 & 3 \\ 3 & 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.