Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3+5487x+263017\) | (homogenize, simplify) |
\(y^2z+xyz=x^3+5487xz^2+263017z^3\) | (dehomogenize, simplify) |
\(y^2=x^3+7111125x+12249987750\) | (homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-24, 355)$ | $0.62541626522254422430097824798$ | $\infty$ |
$(-38, 19)$ | $0$ | $2$ |
Integral points
\( \left(-38, 19\right) \), \( \left(-24, 355\right) \), \( \left(-24, -331\right) \), \( \left(12, 569\right) \), \( \left(12, -581\right) \), \( \left(158, 2175\right) \), \( \left(158, -2333\right) \), \( \left(662, 16819\right) \), \( \left(662, -17481\right) \)
Invariants
Conductor: | $N$ | = | \( 2450 \) | = | $2 \cdot 5^{2} \cdot 7^{2}$ | comment: Conductor
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
oscar: conductor(E)
|
Discriminant: | $\Delta$ | = | $-40353607000000$ | = | $-1 \cdot 2^{6} \cdot 5^{6} \cdot 7^{9} $ | comment: Discriminant
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
oscar: discriminant(E)
|
j-invariant: | $j$ | = | \( \frac{9938375}{21952} \) | = | $2^{-6} \cdot 5^{3} \cdot 7^{-3} \cdot 43^{3}$ | comment: j-invariant
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
oscar: j_invariant(E)
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) | sage: E.has_cm()
magma: HasComplexMultiplication(E);
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.2948952765537637970275997140$ | gp: ellheight(E)
magma: FaltingsHeight(E);
oscar: faltings_height(E)
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.48277875419094304282545632433$ | magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
|
||
$abc$ quality: | $Q$ | ≈ | $0.9869508090989833$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.930854190434036$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ | sage: E.analytic_rank()
gp: ellanalyticrank(E)
magma: AnalyticRank(E);
|
Mordell-Weil rank: | $r$ | = | $ 1$ | comment: Rank
sage: E.rank()
gp: [lower,upper] = ellrank(E)
magma: Rank(E);
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.62541626522254422430097824798$ | comment: Regulator
sage: E.regulator()
G = E.gen \\ if available
magma: Regulator(E);
|
Real period: | $\Omega$ | ≈ | $0.44809782432921183894845838365$ | comment: Real Period
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 48 $ = $ ( 2 \cdot 3 )\cdot2\cdot2^{2} $ | comment: Tamagawa numbers
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ | comment: Torsion order
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
|
Special value: | $ L'(E,1)$ | ≈ | $3.3629720129558805772227220456 $ | comment: Special L-value
r = E.rank();
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) | comment: Order of Sha
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
|
BSD formula
$\displaystyle 3.362972013 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.448098 \cdot 0.625416 \cdot 48}{2^2} \approx 3.362972013$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 6912 | comment: Modular degree
sage: E.modular_degree()
gp: ellmoddegree(E)
magma: ModularDegree(E);
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 | comment: Manin constant
magma: ManinConstant(E);
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $6$ | $I_{6}$ | split multiplicative | -1 | 1 | 6 | 6 |
$5$ | $2$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
$7$ | $4$ | $I_{3}^{*}$ | additive | -1 | 2 | 9 | 3 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 8.6.0.1 |
$3$ | 3Cs | 3.12.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 2520 = 2^{3} \cdot 3^{2} \cdot 5 \cdot 7 \), index $864$, genus $21$, and generators
$\left(\begin{array}{rr} 1 & 36 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1261 & 540 \\ 1530 & 2161 \end{array}\right),\left(\begin{array}{rr} 914 & 1005 \\ 2115 & 2324 \end{array}\right),\left(\begin{array}{rr} 1261 & 540 \\ 0 & 1541 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 36 & 1 \end{array}\right),\left(\begin{array}{rr} 2485 & 36 \\ 2484 & 37 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 6 & 37 \end{array}\right),\left(\begin{array}{rr} 19 & 24 \\ 1440 & 1819 \end{array}\right),\left(\begin{array}{rr} 503 & 0 \\ 0 & 2519 \end{array}\right),\left(\begin{array}{rr} 2341 & 780 \\ 1530 & 1171 \end{array}\right)$.
The torsion field $K:=\Q(E[2520])$ is a degree-$6688604160$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/2520\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | split multiplicative | $4$ | \( 1225 = 5^{2} \cdot 7^{2} \) |
$3$ | good | $2$ | \( 1225 = 5^{2} \cdot 7^{2} \) |
$5$ | additive | $14$ | \( 98 = 2 \cdot 7^{2} \) |
$7$ | additive | $32$ | \( 50 = 2 \cdot 5^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3 and 6.
Its isogeny class 2450y
consists of 6 curves linked by isogenies of
degrees dividing 18.
Twists
The minimal quadratic twist of this elliptic curve is 14a1, its twist by $-35$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-7}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | 2.0.7.1-17500.2-f7 |
$2$ | \(\Q(\sqrt{105}) \) | \(\Z/6\Z\) | 2.2.105.1-28.1-b3 |
$2$ | \(\Q(\sqrt{-35}) \) | \(\Z/6\Z\) | not in database |
$4$ | 4.2.11200.2 | \(\Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{-3}, \sqrt{-35})\) | \(\Z/3\Z \oplus \Z/6\Z\) | not in database |
$4$ | \(\Q(\sqrt{-7}, \sqrt{-15})\) | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$4$ | \(\Q(\sqrt{5}, \sqrt{-7})\) | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$8$ | 8.0.75295360000.8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.6146560000.3 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.121550625.1 | \(\Z/6\Z \oplus \Z/6\Z\) | not in database |
$8$ | 8.4.497871360000.23 | \(\Z/12\Z\) | not in database |
$8$ | 8.0.6146560000.7 | \(\Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/3\Z \oplus \Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
$16$ | 16.0.37780199833600000000.1 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
$18$ | 18.6.289623944880339399949805928000000000.2 | \(\Z/18\Z\) | not in database |
$18$ | 18.0.3592387894022842621341796875.1 | \(\Z/18\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | split | ord | add | add | ss | ord | ord | ord | ss | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | 4 | 5 | - | - | 1,1 | 3 | 1 | 1 | 1,1 | 1 | 1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | 0 | 0 | - | - | 0,0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.