sage:E = EllipticCurve("z1")
E.isogeny_class()
Elliptic curves in class 24640z
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
24640.q4 |
24640z1 |
[0,0,0,−188,−2448] |
−44851536/132055 |
−2163589120 |
[2] |
8192 |
0.47816
|
Γ0(N)-optimal |
24640.q3 |
24640z2 |
[0,0,0,−4108,−101232] |
116986321764/148225 |
9714073600 |
[2,2] |
16384 |
0.82474
|
|
24640.q2 |
24640z3 |
[0,0,0,−5228,−41648] |
120564797922/64054375 |
8395735040000 |
[2] |
32768 |
1.1713
|
|
24640.q1 |
24640z4 |
[0,0,0,−65708,−6482992] |
239369344910082/385 |
50462720 |
[2] |
32768 |
1.1713
|
|
sage:E.rank()
The elliptic curves in class 24640z have
rank 0.
The elliptic curves in class 24640z do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
⎝⎜⎜⎛1244212242144241⎠⎟⎟⎞
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.