Properties

Label 24640z
Number of curves 44
Conductor 2464024640
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("z1") E.isogeny_class()
 

Elliptic curves in class 24640z

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
24640.q4 24640z1 [0,0,0,188,2448][0, 0, 0, -188, -2448] 44851536/132055-44851536/132055 2163589120-2163589120 [2][2] 81928192 0.478160.47816 Γ0(N)\Gamma_0(N)-optimal
24640.q3 24640z2 [0,0,0,4108,101232][0, 0, 0, -4108, -101232] 116986321764/148225116986321764/148225 97140736009714073600 [2,2][2, 2] 1638416384 0.824740.82474  
24640.q2 24640z3 [0,0,0,5228,41648][0, 0, 0, -5228, -41648] 120564797922/64054375120564797922/64054375 83957350400008395735040000 [2][2] 3276832768 1.17131.1713  
24640.q1 24640z4 [0,0,0,65708,6482992][0, 0, 0, -65708, -6482992] 239369344910082/385239369344910082/385 5046272050462720 [2][2] 3276832768 1.17131.1713  

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 24640z have rank 00.

Complex multiplication

The elliptic curves in class 24640z do not have complex multiplication.

Modular form 24640.2.a.z

Copy content sage:E.q_eigenform(10)
 
qq5q73q9q11+2q13+2q17+O(q20)q - q^{5} - q^{7} - 3 q^{9} - q^{11} + 2 q^{13} + 2 q^{17} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1244212242144241)\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.