sage: E = EllipticCurve([1, 0, 1, -13, 12])
gp: E = ellinit([1, 0, 1, -13, 12])
magma: E := EllipticCurve([1, 0, 1, -13, 12]);
oscar: E = elliptic_curve([1, 0, 1, -13, 12])
sage: E.short_weierstrass_model()
magma: WeierstrassModel(E);
oscar: short_weierstrass_model(E)
Z ⊕ Z ⊕ Z \Z \oplus \Z \oplus \Z Z ⊕ Z ⊕ Z
magma: MordellWeilGroup(E);
P P P h ^ ( P ) \hat{h}(P) h ^ ( P ) Order
( 1 , 0 ) (1, 0) ( 1 , 0 ) 0.73520832076044686163238118873 0.73520832076044686163238118873 0 . 7 3 5 2 0 8 3 2 0 7 6 0 4 4 6 8 6 1 6 3 2 3 8 1 1 8 8 7 3 ∞ \infty ∞
( 3 , 0 ) (3, 0) ( 3 , 0 ) 0.93720339351220953655546125555 0.93720339351220953655546125555 0 . 9 3 7 2 0 3 3 9 3 5 1 2 2 0 9 5 3 6 5 5 5 4 6 1 2 5 5 5 5 ∞ \infty ∞
( 0 , 3 ) (0, 3) ( 0 , 3 ) 1.2891331234410247484925198727 1.2891331234410247484925198727 1 . 2 8 9 1 3 3 1 2 3 4 4 1 0 2 4 7 4 8 4 9 2 5 1 9 8 7 2 7 ∞ \infty ∞
( − 4 , 3 ) \left(-4, 3\right) ( − 4 , 3 ) , ( − 4 , 0 ) \left(-4, 0\right) ( − 4 , 0 ) , ( − 3 , 6 ) \left(-3, 6\right) ( − 3 , 6 ) , ( − 3 , − 4 ) \left(-3, -4\right) ( − 3 , − 4 ) , ( − 2 , 6 ) \left(-2, 6\right) ( − 2 , 6 ) , ( − 2 , − 5 ) \left(-2, -5\right) ( − 2 , − 5 ) , ( 0 , 3 ) \left(0, 3\right) ( 0 , 3 ) , ( 0 , − 4 ) \left(0, -4\right) ( 0 , − 4 ) , ( 1 , 0 ) \left(1, 0\right) ( 1 , 0 ) , ( 1 , − 2 ) \left(1, -2\right) ( 1 , − 2 ) , ( 3 , 0 ) \left(3, 0\right) ( 3 , 0 ) , ( 3 , − 4 ) \left(3, -4\right) ( 3 , − 4 ) , ( 4 , 3 ) \left(4, 3\right) ( 4 , 3 ) , ( 4 , − 8 ) \left(4, -8\right) ( 4 , − 8 ) , ( 5 , 6 ) \left(5, 6\right) ( 5 , 6 ) , ( 5 , − 12 ) \left(5, -12\right) ( 5 , − 1 2 ) , ( 18 , 66 ) \left(18, 66\right) ( 1 8 , 6 6 ) , ( 18 , − 85 ) \left(18, -85\right) ( 1 8 , − 8 5 ) , ( 19 , 72 ) \left(19, 72\right) ( 1 9 , 7 2 ) , ( 19 , − 92 ) \left(19, -92\right) ( 1 9 , − 9 2 ) , ( 22 , 91 ) \left(22, 91\right) ( 2 2 , 9 1 ) , ( 22 , − 114 ) \left(22, -114\right) ( 2 2 , − 1 1 4 ) , ( 49 , 318 ) \left(49, 318\right) ( 4 9 , 3 1 8 ) , ( 49 , − 368 ) \left(49, -368\right) ( 4 9 , − 3 6 8 ) , ( 115 , 1176 ) \left(115, 1176\right) ( 1 1 5 , 1 1 7 6 ) , ( 115 , − 1292 ) \left(115, -1292\right) ( 1 1 5 , − 1 2 9 2 ) , ( 201 , 2750 ) \left(201, 2750\right) ( 2 0 1 , 2 7 5 0 ) , ( 201 , − 2952 ) \left(201, -2952\right) ( 2 0 1 , − 2 9 5 2 ) , ( 1940 , 84483 ) \left(1940, 84483\right) ( 1 9 4 0 , 8 4 4 8 3 ) , ( 1940 , − 86424 ) \left(1940, -86424\right) ( 1 9 4 0 , − 8 6 4 2 4 ) , ( 3741 , 226950 ) \left(3741, 226950\right) ( 3 7 4 1 , 2 2 6 9 5 0 ) , ( 3741 , − 230692 ) \left(3741, -230692\right) ( 3 7 4 1 , − 2 3 0 6 9 2 ) , ( 24769 , 3885822 ) \left(24769, 3885822\right) ( 2 4 7 6 9 , 3 8 8 5 8 2 2 ) , ( 24769 , − 3910592 ) \left(24769, -3910592\right) ( 2 4 7 6 9 , − 3 9 1 0 5 9 2 )
sage: E.integral_points()
magma: IntegralPoints(E);
Invariants
Conductor :
N N N
=
24646 24646 2 4 6 4 6 = 2 ⋅ 12323 2 \cdot 12323 2 ⋅ 1 2 3 2 3
sage: E.conductor().factor()
Discriminant :
Δ \Delta Δ
=
49292 49292 4 9 2 9 2 = 2 2 ⋅ 12323 2^{2} \cdot 12323 2 2 ⋅ 1 2 3 2 3
sage: E.discriminant().factor()
j-invariant :
j j j
=
217081801 49292 \frac{217081801}{49292} 4 9 2 9 2 2 1 7 0 8 1 8 0 1 = 2 − 2 ⋅ 60 1 3 ⋅ 1232 3 − 1 2^{-2} \cdot 601^{3} \cdot 12323^{-1} 2 − 2 ⋅ 6 0 1 3 ⋅ 1 2 3 2 3 − 1
sage: E.j_invariant().factor()
Endomorphism ring :
E n d ( E ) \mathrm{End}(E) E n d ( E ) = Z \Z Z
Geometric endomorphism ring :
E n d ( E Q ‾ ) \mathrm{End}(E_{\overline{\Q}}) E n d ( E Q )
=
Z \Z Z
(no potential complex multiplication )
magma: HasComplexMultiplication(E);
Sato-Tate group :
S T ( E ) \mathrm{ST}(E) S T ( E ) = S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
Faltings height :
h F a l t i n g s h_{\mathrm{Faltings}} h F a l t i n g s ≈ − 0.38688689620004279597849138124 -0.38688689620004279597849138124 − 0 . 3 8 6 8 8 6 8 9 6 2 0 0 0 4 2 7 9 5 9 7 8 4 9 1 3 8 1 2 4
magma: FaltingsHeight(E);
oscar: faltings_height(E)
Stable Faltings height :
h s t a b l e h_{\mathrm{stable}} h s t a b l e ≈ − 0.38688689620004279597849138124 -0.38688689620004279597849138124 − 0 . 3 8 6 8 8 6 8 9 6 2 0 0 0 4 2 7 9 5 9 7 8 4 9 1 3 8 1 2 4
magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
a b c abc a b c quality :
Q Q Q ≈ 0.7120527609648206 0.7120527609648206 0 . 7 1 2 0 5 2 7 6 0 9 6 4 8 2 0 6
Szpiro ratio :
σ m \sigma_{m} σ m ≈ 1.8982478888603207 1.8982478888603207 1 . 8 9 8 2 4 7 8 8 8 8 6 0 3 2 0 7
Analytic rank :
r a n r_{\mathrm{an}} r a n = 3 3 3
Mordell-Weil rank :
r r r = 3 3 3
gp: [lower,upper] = ellrank(E)
Regulator :
R e g ( E / Q ) \mathrm{Reg}(E/\Q) R e g ( E / Q ) ≈ 0.66167081734777120660542167927 0.66167081734777120660542167927 0 . 6 6 1 6 7 0 8 1 7 3 4 7 7 7 1 2 0 6 6 0 5 4 2 1 6 7 9 2 7
G = E.gen \\ if available
matdet(ellheightmatrix(E,G))
Real period :
Ω \Omega Ω ≈ 3.3619964844417845524050300509 3.3619964844417845524050300509 3 . 3 6 1 9 9 6 4 8 4 4 4 1 7 8 4 5 5 2 4 0 5 0 3 0 0 5 0 9
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
Tamagawa product :
∏ p c p \prod_{p}c_p ∏ p c p = 2 2 2
= 2 ⋅ 1 2\cdot1 2 ⋅ 1
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
Torsion order :
# E ( Q ) t o r \#E(\Q)_{\mathrm{tor}} # E ( Q ) t o r = 1 1 1
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
Special value :
L ( 3 ) ( E , 1 ) / 3 ! L^{(3)}(E,1)/3! L ( 3 ) ( E , 1 ) / 3 ! ≈ 4.4490699235618578954506415131 4.4490699235618578954506415131 4 . 4 4 9 0 6 9 9 2 3 5 6 1 8 5 7 8 9 5 4 5 0 6 4 1 5 1 3 1
r = E.rank();
E.lseries().dokchitser().derivative(1,r)/r.factorial()
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
Analytic order of Ш :
Шa n {}_{\mathrm{an}} a n
≈
1 1 1
(rounded )
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
4.449069924 ≈ L ( 3 ) ( E , 1 ) / 3 ! = ? # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p # E ( Q ) t o r 2 ≈ 1 ⋅ 3.361996 ⋅ 0.661671 ⋅ 2 1 2 ≈ 4.449069924 \displaystyle 4.449069924 \approx L^{(3)}(E,1)/3! \overset{?}{=} \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 3.361996 \cdot 0.661671 \cdot 2}{1^2} \approx 4.449069924 4 . 4 4 9 0 6 9 9 2 4 ≈ L ( 3 ) ( E , 1 ) / 3 ! = ? # E ( Q ) t o r 2 # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p ≈ 1 2 1 ⋅ 3 . 3 6 1 9 9 6 ⋅ 0 . 6 6 1 6 7 1 ⋅ 2 ≈ 4 . 4 4 9 0 6 9 9 2 4
# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
Modular form
24646.2.a.a
q − q 2 − 2 q 3 + q 4 − 4 q 5 + 2 q 6 − 2 q 7 − q 8 + q 9 + 4 q 10 − 4 q 11 − 2 q 12 − 5 q 13 + 2 q 14 + 8 q 15 + q 16 − 3 q 17 − q 18 − 7 q 19 + O ( q 20 ) q - q^{2} - 2 q^{3} + q^{4} - 4 q^{5} + 2 q^{6} - 2 q^{7} - q^{8} + q^{9} + 4 q^{10} - 4 q^{11} - 2 q^{12} - 5 q^{13} + 2 q^{14} + 8 q^{15} + q^{16} - 3 q^{17} - q^{18} - 7 q^{19} + O(q^{20}) q − q 2 − 2 q 3 + q 4 − 4 q 5 + 2 q 6 − 2 q 7 − q 8 + q 9 + 4 q 1 0 − 4 q 1 1 − 2 q 1 2 − 5 q 1 3 + 2 q 1 4 + 8 q 1 5 + q 1 6 − 3 q 1 7 − q 1 8 − 7 q 1 9 + O ( q 2 0 )
\\ actual modular form, use for small N
[mf,F] = mffromell(E)
Ser(mfcoefs(mf,20),q)
\\ or just the series
Ser(ellan(E,20),q)*q
For more coefficients, see the Downloads section to the right.
This elliptic curve is semistable .
There
are 2 primes p p p
of bad reduction :
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
The ℓ \ell ℓ -adic Galois representation has maximal image
for all primes ℓ \ell ℓ .
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
gens = [[1, 1, 49291, 0], [12325, 2, 12325, 3], [24647, 2, 24647, 3], [49291, 2, 49290, 3], [1, 0, 2, 1], [1, 2, 0, 1]]
GL(2,Integers(49292)).subgroup(gens)
Gens := [[1, 1, 49291, 0], [12325, 2, 12325, 3], [24647, 2, 24647, 3], [49291, 2, 49290, 3], [1, 0, 2, 1], [1, 2, 0, 1]];
sub<GL(2,Integers(49292))|Gens>;
The image H : = ρ E ( Gal ( Q ‾ / Q ) ) H:=\rho_E(\Gal(\overline{\Q}/\Q)) H : = ρ E ( G a l ( Q / Q ) ) of the adelic Galois representation has
level 49292 = 2 2 ⋅ 12323 49292 = 2^{2} \cdot 12323 4 9 2 9 2 = 2 2 ⋅ 1 2 3 2 3 , index 2 2 2 , genus 0 0 0 , and generators
( 1 1 49291 0 ) , ( 12325 2 12325 3 ) , ( 24647 2 24647 3 ) , ( 49291 2 49290 3 ) , ( 1 0 2 1 ) , ( 1 2 0 1 ) \left(\begin{array}{rr}
1 & 1 \\
49291 & 0
\end{array}\right),\left(\begin{array}{rr}
12325 & 2 \\
12325 & 3
\end{array}\right),\left(\begin{array}{rr}
24647 & 2 \\
24647 & 3
\end{array}\right),\left(\begin{array}{rr}
49291 & 2 \\
49290 & 3
\end{array}\right),\left(\begin{array}{rr}
1 & 0 \\
2 & 1
\end{array}\right),\left(\begin{array}{rr}
1 & 2 \\
0 & 1
\end{array}\right) ( 1 4 9 2 9 1 1 0 ) , ( 1 2 3 2 5 1 2 3 2 5 2 3 ) , ( 2 4 6 4 7 2 4 6 4 7 2 3 ) , ( 4 9 2 9 1 4 9 2 9 0 2 3 ) , ( 1 2 0 1 ) , ( 1 0 2 1 ) .
The torsion field K : = Q ( E [ 49292 ] ) K:=\Q(E[49292]) K : = Q ( E [ 4 9 2 9 2 ] ) is a degree-1106806712638558464 1106806712638558464 1 1 0 6 8 0 6 7 1 2 6 3 8 5 5 8 4 6 4 Galois extension of Q \Q Q with Gal ( K / Q ) \Gal(K/\Q) G a l ( K / Q ) isomorphic to the projection of H H H to GL 2 ( Z / 49292 Z ) \GL_2(\Z/49292\Z) GL 2 ( Z / 4 9 2 9 2 Z ) .
The table below list all primes ℓ \ell ℓ for which the Serre invariants associated to the mod-ℓ \ell ℓ Galois representation are exceptional.
This curve has no rational isogenies. Its isogeny class 24646b
consists of this curve only.
This elliptic curve is its own minimal quadratic twist .
The number fields K K K of degree less than 24 such that
E ( K ) t o r s E(K)_{\rm tors} E ( K ) t o r s is strictly larger than E ( Q ) t o r s E(\Q)_{\rm tors} E ( Q ) t o r s
(which is trivial)
are as follows:
[ K : Q ] [K:\Q] [ K : Q ]
K K K
E ( K ) t o r s E(K)_{\rm tors} E ( K ) t o r s
Base change curve
3 3 3
3.3.49292.1
Z / 2 Z \Z/2\Z Z / 2 Z
not in database
6 6 6
6.6.119764834705088.1
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z \oplus \Z/2\Z Z / 2 Z ⊕ Z / 2 Z
not in database
8 8 8
deg 8
Z / 3 Z \Z/3\Z Z / 3 Z
not in database
12 12 1 2
deg 12
Z / 4 Z \Z/4\Z Z / 4 Z
not in database
We only show fields where the torsion growth is primitive .
For fields not in the database, click on the degree shown to reveal the defining polynomial.
An entry ? indicates that the invariants have not yet been computed.
p p p -adic regulators
Note: p p p -adic regulator data only exists for primes p ≥ 5 p\ge 5 p ≥ 5 of good ordinary
reduction.
Choose a prime...
5
7
11
13
17
19
23
29
31
37
41
43
47
53
59
61
67
71
73
79
83
89
97