Properties

Label 24646b1
Conductor 2464624646
Discriminant 4929249292
j-invariant 21708180149292 \frac{217081801}{49292}
CM no
Rank 33
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy+y=x313x+12y^2+xy+y=x^3-13x+12 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz+yz2=x313xz2+12z3y^2z+xyz+yz^2=x^3-13xz^2+12z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x316227x+620190y^2=x^3-16227x+620190 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, 0, 1, -13, 12])
 
gp: E = ellinit([1, 0, 1, -13, 12])
 
magma: E := EllipticCurve([1, 0, 1, -13, 12]);
 
oscar: E = elliptic_curve([1, 0, 1, -13, 12])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

ZZZ\Z \oplus \Z \oplus \Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(1,0)(1, 0)0.735208320760446861632381188730.73520832076044686163238118873\infty
(3,0)(3, 0)0.937203393512209536555461255550.93720339351220953655546125555\infty
(0,3)(0, 3)1.28913312344102474849251987271.2891331234410247484925198727\infty

Integral points

(4,3) \left(-4, 3\right) , (4,0) \left(-4, 0\right) , (3,6) \left(-3, 6\right) , (3,4) \left(-3, -4\right) , (2,6) \left(-2, 6\right) , (2,5) \left(-2, -5\right) , (0,3) \left(0, 3\right) , (0,4) \left(0, -4\right) , (1,0) \left(1, 0\right) , (1,2) \left(1, -2\right) , (3,0) \left(3, 0\right) , (3,4) \left(3, -4\right) , (4,3) \left(4, 3\right) , (4,8) \left(4, -8\right) , (5,6) \left(5, 6\right) , (5,12) \left(5, -12\right) , (18,66) \left(18, 66\right) , (18,85) \left(18, -85\right) , (19,72) \left(19, 72\right) , (19,92) \left(19, -92\right) , (22,91) \left(22, 91\right) , (22,114) \left(22, -114\right) , (49,318) \left(49, 318\right) , (49,368) \left(49, -368\right) , (115,1176) \left(115, 1176\right) , (115,1292) \left(115, -1292\right) , (201,2750) \left(201, 2750\right) , (201,2952) \left(201, -2952\right) , (1940,84483) \left(1940, 84483\right) , (1940,86424) \left(1940, -86424\right) , (3741,226950) \left(3741, 226950\right) , (3741,230692) \left(3741, -230692\right) , (24769,3885822) \left(24769, 3885822\right) , (24769,3910592) \left(24769, -3910592\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  24646 24646  = 2123232 \cdot 12323
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  4929249292 = 22123232^{2} \cdot 12323
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  21708180149292 \frac{217081801}{49292}  = 2260131232312^{-2} \cdot 601^{3} \cdot 12323^{-1}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 0.38688689620004279597849138124-0.38688689620004279597849138124
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.38688689620004279597849138124-0.38688689620004279597849138124
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.71205276096482060.7120527609648206
Szpiro ratio: σm\sigma_{m} ≈ 1.89824788886032071.8982478888603207

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 3 3
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 3 3
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 0.661670817347771206605421679270.66167081734777120660542167927
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 3.36199648444178455240503005093.3619964844417845524050300509
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 2 2  = 21 2\cdot1
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(3)(E,1)/3! L^{(3)}(E,1)/3! ≈ 4.44906992356185789545064151314.4490699235618578954506415131
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

4.449069924L(3)(E,1)/3!=?#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor213.3619960.6616712124.449069924\displaystyle 4.449069924 \approx L^{(3)}(E,1)/3! \overset{?}{=} \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 3.361996 \cdot 0.661671 \cdot 2}{1^2} \approx 4.449069924

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   24646.2.a.a

qq22q3+q44q5+2q62q7q8+q9+4q104q112q125q13+2q14+8q15+q163q17q187q19+O(q20) q - q^{2} - 2 q^{3} + q^{4} - 4 q^{5} + 2 q^{6} - 2 q^{7} - q^{8} + q^{9} + 4 q^{10} - 4 q^{11} - 2 q^{12} - 5 q^{13} + 2 q^{14} + 8 q^{15} + q^{16} - 3 q^{17} - q^{18} - 7 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 5392
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is semistable. There are 2 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 22 I2I_{2} nonsplit multiplicative 1 1 2 2
1232312323 11 I1I_{1} nonsplit multiplicative 1 1 1 1

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell.

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[1, 1, 49291, 0], [12325, 2, 12325, 3], [24647, 2, 24647, 3], [49291, 2, 49290, 3], [1, 0, 2, 1], [1, 2, 0, 1]]
 
GL(2,Integers(49292)).subgroup(gens)
 
Gens := [[1, 1, 49291, 0], [12325, 2, 12325, 3], [24647, 2, 24647, 3], [49291, 2, 49290, 3], [1, 0, 2, 1], [1, 2, 0, 1]];
 
sub<GL(2,Integers(49292))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 49292=2212323 49292 = 2^{2} \cdot 12323 , index 22, genus 00, and generators

(11492910),(123252123253),(246472246473),(492912492903),(1021),(1201)\left(\begin{array}{rr} 1 & 1 \\ 49291 & 0 \end{array}\right),\left(\begin{array}{rr} 12325 & 2 \\ 12325 & 3 \end{array}\right),\left(\begin{array}{rr} 24647 & 2 \\ 24647 & 3 \end{array}\right),\left(\begin{array}{rr} 49291 & 2 \\ 49290 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[49292])K:=\Q(E[49292]) is a degree-11068067126385584641106806712638558464 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/49292Z)\GL_2(\Z/49292\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 nonsplit multiplicative 44 12323 12323
1232312323 nonsplit multiplicative 1232412324 2 2

Isogenies

gp: ellisomat(E)
 

This curve has no rational isogenies. Its isogeny class 24646b consists of this curve only.

Twists

This elliptic curve is its own minimal quadratic twist.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
33 3.3.49292.1 Z/2Z\Z/2\Z not in database
66 6.6.119764834705088.1 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
88 deg 8 Z/3Z\Z/3\Z not in database
1212 deg 12 Z/4Z\Z/4\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 12323
Reduction type nonsplit ord ord ord ord ord ord ord ord ord ord ord ord ord ord nonsplit
λ\lambda-invariant(s) 3 5 3 3 3 3 3 3 3 3 3 3 3 3 3 ?
μ\mu-invariant(s) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ?

An entry ? indicates that the invariants have not yet been computed.

pp-adic regulators

Note: pp-adic regulator data only exists for primes p5p\ge 5 of good ordinary reduction.