Properties

Label 2475.j
Number of curves $2$
Conductor $2475$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("j1")
 
E.isogeny_class()
 

Elliptic curves in class 2475.j

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
2475.j1 2475a2 \([1, -1, 0, -417, 3366]\) \(19034163/121\) \(51046875\) \([2]\) \(640\) \(0.31603\)  
2475.j2 2475a1 \([1, -1, 0, -42, -9]\) \(19683/11\) \(4640625\) \([2]\) \(320\) \(-0.030545\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 2475.j have rank \(1\).

Complex multiplication

The elliptic curves in class 2475.j do not have complex multiplication.

Modular form 2475.2.a.j

sage: E.q_eigenform(10)
 
\(q + q^{2} - q^{4} + 2 q^{7} - 3 q^{8} - q^{11} + 2 q^{13} + 2 q^{14} - q^{16} - 2 q^{17} - 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.