Show commands:
SageMath
E = EllipticCurve("j1")
E.isogeny_class()
Elliptic curves in class 2475.j
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
2475.j1 | 2475a2 | \([1, -1, 0, -417, 3366]\) | \(19034163/121\) | \(51046875\) | \([2]\) | \(640\) | \(0.31603\) | |
2475.j2 | 2475a1 | \([1, -1, 0, -42, -9]\) | \(19683/11\) | \(4640625\) | \([2]\) | \(320\) | \(-0.030545\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 2475.j have rank \(1\).
Complex multiplication
The elliptic curves in class 2475.j do not have complex multiplication.Modular form 2475.2.a.j
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.