Properties

Label 2475.j
Number of curves 22
Conductor 24752475
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("j1") E.isogeny_class()
 

Elliptic curves in class 2475.j

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
2475.j1 2475a2 [1,1,0,417,3366][1, -1, 0, -417, 3366] 19034163/12119034163/121 5104687551046875 [2][2] 640640 0.316030.31603  
2475.j2 2475a1 [1,1,0,42,9][1, -1, 0, -42, -9] 19683/1119683/11 46406254640625 [2][2] 320320 0.030545-0.030545 Γ0(N)\Gamma_0(N)-optimal

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 2475.j have rank 11.

L-function data

 
Bad L-factors:
Prime L-Factor
3311
5511
11111+T1 + T
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
22 1T+2T2 1 - T + 2 T^{2} 1.2.ab
77 12T+7T2 1 - 2 T + 7 T^{2} 1.7.ac
1313 12T+13T2 1 - 2 T + 13 T^{2} 1.13.ac
1717 1+2T+17T2 1 + 2 T + 17 T^{2} 1.17.c
1919 1+6T+19T2 1 + 6 T + 19 T^{2} 1.19.g
2323 1+4T+23T2 1 + 4 T + 23 T^{2} 1.23.e
2929 1+6T+29T2 1 + 6 T + 29 T^{2} 1.29.g
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 2475.j do not have complex multiplication.

Modular form 2475.2.a.j

Copy content sage:E.q_eigenform(10)
 
q+q2q4+2q73q8q11+2q13+2q14q162q176q19+O(q20)q + q^{2} - q^{4} + 2 q^{7} - 3 q^{8} - q^{11} + 2 q^{13} + 2 q^{14} - q^{16} - 2 q^{17} - 6 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1221)\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.