Properties

Label 249690.f
Number of curves $4$
Conductor $249690$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("f1")
 
E.isogeny_class()
 

Elliptic curves in class 249690.f

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
249690.f1 249690f3 \([1, 1, 0, -583963, -119850257]\) \(22023222535845979528249/6564806277121830150\) \(6564806277121830150\) \([2]\) \(6619136\) \(2.3162\)  
249690.f2 249690f2 \([1, 1, 0, -533213, -150066807]\) \(16765911613813068220249/2620052663602500\) \(2620052663602500\) \([2, 2]\) \(3309568\) \(1.9696\)  
249690.f3 249690f1 \([1, 1, 0, -533193, -150078603]\) \(16764025095699365996569/409491600\) \(409491600\) \([2]\) \(1654784\) \(1.6230\) \(\Gamma_0(N)\)-optimal
249690.f4 249690f4 \([1, 1, 0, -482783, -179528013]\) \(-12444602381446785105529/6690570482252343750\) \(-6690570482252343750\) \([2]\) \(6619136\) \(2.3162\)  

Rank

sage: E.rank()
 

The elliptic curves in class 249690.f have rank \(0\).

Complex multiplication

The elliptic curves in class 249690.f do not have complex multiplication.

Modular form 249690.2.a.f

sage: E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} - q^{5} + q^{6} - q^{7} - q^{8} + q^{9} + q^{10} + 4 q^{11} - q^{12} + 2 q^{13} + q^{14} + q^{15} + q^{16} + 2 q^{17} - q^{18} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.