Show commands:
SageMath
E = EllipticCurve("v1")
E.isogeny_class()
Elliptic curves in class 249690.v
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
249690.v1 | 249690v2 | \([1, 0, 1, -10809898, -13725606244]\) | \(-139697438374379634892156441/531351792476467200000\) | \(-531351792476467200000\) | \([]\) | \(21384000\) | \(2.8359\) | |
249690.v2 | 249690v1 | \([1, 0, 1, 299477, -98649994]\) | \(2970408770986067593559/5925260742187500000\) | \(-5925260742187500000\) | \([3]\) | \(7128000\) | \(2.2866\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 249690.v have rank \(0\).
Complex multiplication
The elliptic curves in class 249690.v do not have complex multiplication.Modular form 249690.2.a.v
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.