Show commands:
SageMath
E = EllipticCurve("g1")
E.isogeny_class()
Elliptic curves in class 249690.g
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
249690.g1 | 249690g1 | \([1, 1, 0, -413, -2307]\) | \(7820164617049/2556825600\) | \(2556825600\) | \([2]\) | \(147456\) | \(0.50830\) | \(\Gamma_0(N)\)-optimal |
249690.g2 | 249690g2 | \([1, 1, 0, 1187, -14147]\) | \(184715807453351/199504307520\) | \(-199504307520\) | \([2]\) | \(294912\) | \(0.85487\) |
Rank
sage: E.rank()
The elliptic curves in class 249690.g have rank \(2\).
Complex multiplication
The elliptic curves in class 249690.g do not have complex multiplication.Modular form 249690.2.a.g
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.