Properties

Label 249690.h
Number of curves $1$
Conductor $249690$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("h1")
 
E.isogeny_class()
 

Elliptic curves in class 249690.h

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
249690.h1 249690h1 \([1, 1, 0, -221797, 36890509]\) \(1206684612015266606041/107450595840000000\) \(107450595840000000\) \([]\) \(3104640\) \(2.0079\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 249690.h1 has rank \(1\).

Complex multiplication

The elliptic curves in class 249690.h do not have complex multiplication.

Modular form 249690.2.a.h

sage: E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} + q^{5} + q^{6} - q^{7} - q^{8} + q^{9} - q^{10} - 3 q^{11} - q^{12} - q^{13} + q^{14} - q^{15} + q^{16} + 4 q^{17} - q^{18} + q^{19} + O(q^{20})\) Copy content Toggle raw display