Properties

Label 249690h1
Conductor 249690249690
Discriminant 1.075×10171.075\times 10^{17}
j-invariant 1206684612015266606041107450595840000000 \frac{1206684612015266606041}{107450595840000000}
CM no
Rank 11
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy=x3+x2221797x+36890509y^2+xy=x^3+x^2-221797x+36890509 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz=x3+x2z221797xz2+36890509z3y^2z+xyz=x^3+x^2z-221797xz^2+36890509z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3287449587x+1725475328334y^2=x^3-287449587x+1725475328334 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, 1, 0, -221797, 36890509])
 
gp: E = ellinit([1, 1, 0, -221797, 36890509])
 
magma: E := EllipticCurve([1, 1, 0, -221797, 36890509]);
 
oscar: E = elliptic_curve([1, 1, 0, -221797, 36890509])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

Z\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(153,2486)(153, 2486)0.632914585274854566355146310220.63291458527485456635514631022\infty

Integral points

(153,2486) \left(153, 2486\right) , (153,2639) \left(153, -2639\right) , (563,9251) \left(563, 9251\right) , (563,9814) \left(563, -9814\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  249690 249690  = 235729412 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  107450595840000000107450595840000000 = 2153577294132^{15} \cdot 3 \cdot 5^{7} \cdot 7 \cdot 29 \cdot 41^{3}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  1206684612015266606041107450595840000000 \frac{1206684612015266606041}{107450595840000000}  = 2153157712914131064628132^{-15} \cdot 3^{-1} \cdot 5^{-7} \cdot 7^{-1} \cdot 29^{-1} \cdot 41^{-3} \cdot 10646281^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 2.00793372145299110488323139202.0079337214529911048832313920
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 2.00793372145299110488323139202.0079337214529911048832313920
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.91942469786365010.9194246978636501
Szpiro ratio: σm\sigma_{m} ≈ 3.9058786240208123.905878624020812

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 0.632914585274854566355146310220.63291458527485456635514631022
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.325924553975406975504471743990.32592455397540697550447174399
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 21 21  = 117113 1\cdot1\cdot7\cdot1\cdot1\cdot3
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 4.33193048211496981915338008474.3319304821149698191533800847
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

4.331930482L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.3259250.63291521124.331930482\displaystyle 4.331930482 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.325925 \cdot 0.632915 \cdot 21}{1^2} \approx 4.331930482

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 249690.2.a.h

qq2q3+q4+q5+q6q7q8+q9q103q11q12q13+q14q15+q16+4q17q18+q19+O(q20) q - q^{2} - q^{3} + q^{4} + q^{5} + q^{6} - q^{7} - q^{8} + q^{9} - q^{10} - 3 q^{11} - q^{12} - q^{13} + q^{14} - q^{15} + q^{16} + 4 q^{17} - q^{18} + q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 3104640
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is semistable. There are 6 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 11 I15I_{15} nonsplit multiplicative 1 1 15 15
33 11 I1I_{1} nonsplit multiplicative 1 1 1 1
55 77 I7I_{7} split multiplicative -1 1 7 7
77 11 I1I_{1} nonsplit multiplicative 1 1 1 1
2929 11 I1I_{1} nonsplit multiplicative 1 1 1 1
4141 33 I3I_{3} split multiplicative -1 1 3 3

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell.

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[499381, 2, 499381, 3], [713401, 2, 713401, 3], [413281, 2, 413281, 3], [749071, 2, 0, 1], [1, 1, 998759, 0], [332921, 2, 332921, 3], [998759, 2, 998758, 3], [852601, 2, 852601, 3], [599257, 2, 599257, 3], [1, 0, 2, 1], [1, 2, 0, 1]]
 
GL(2,Integers(998760)).subgroup(gens)
 
Gens := [[499381, 2, 499381, 3], [713401, 2, 713401, 3], [413281, 2, 413281, 3], [749071, 2, 0, 1], [1, 1, 998759, 0], [332921, 2, 332921, 3], [998759, 2, 998758, 3], [852601, 2, 852601, 3], [599257, 2, 599257, 3], [1, 0, 2, 1], [1, 2, 0, 1]];
 
sub<GL(2,Integers(998760))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 998760=233572941 998760 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41 , index 22, genus 00, and generators

(49938124993813),(71340127134013),(41328124132813),(749071201),(119987590),(33292123329213),(99875929987583),(85260128526013),(59925725992573),(1021),(1201)\left(\begin{array}{rr} 499381 & 2 \\ 499381 & 3 \end{array}\right),\left(\begin{array}{rr} 713401 & 2 \\ 713401 & 3 \end{array}\right),\left(\begin{array}{rr} 413281 & 2 \\ 413281 & 3 \end{array}\right),\left(\begin{array}{rr} 749071 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 998759 & 0 \end{array}\right),\left(\begin{array}{rr} 332921 & 2 \\ 332921 & 3 \end{array}\right),\left(\begin{array}{rr} 998759 & 2 \\ 998758 & 3 \end{array}\right),\left(\begin{array}{rr} 852601 & 2 \\ 852601 & 3 \end{array}\right),\left(\begin{array}{rr} 599257 & 2 \\ 599257 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[998760])K:=\Q(E[998760]) is a degree-6703824983065362432000067038249830653624320000 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/998760Z)\GL_2(\Z/998760\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 nonsplit multiplicative 44 124845=3572941 124845 = 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41
33 nonsplit multiplicative 44 1015=5729 1015 = 5 \cdot 7 \cdot 29
55 split multiplicative 66 24969=372941 24969 = 3 \cdot 7 \cdot 29 \cdot 41
77 nonsplit multiplicative 88 7134=232941 7134 = 2 \cdot 3 \cdot 29 \cdot 41
2929 nonsplit multiplicative 3030 8610=235741 8610 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 41
4141 split multiplicative 4242 6090=235729 6090 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29

Isogenies

gp: ellisomat(E)
 

This curve has no rational isogenies. Its isogeny class 249690h consists of this curve only.

Twists

This elliptic curve is its own minimal quadratic twist.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
33 3.3.998760.1 Z/2Z\Z/2\Z not in database
66 6.6.996284610893376000.1 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
88 deg 8 Z/3Z\Z/3\Z not in database
1212 deg 12 Z/4Z\Z/4\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

No Iwasawa invariant data is available for this curve.

pp-adic regulators

pp-adic regulators are not yet computed for curves that are not Γ0\Gamma_0-optimal.