Properties

Label 249690t1
Conductor 249690249690
Discriminant 799008000000-799008000000
j-invariant 1771561799008000000 -\frac{1771561}{799008000000}
CM no
Rank 11
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy+y=x33x+43006y^2+xy+y=x^3-3x+43006 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz+yz2=x33xz2+43006z3y^2z+xyz+yz^2=x^3-3xz^2+43006z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x33267x+2006509374y^2=x^3-3267x+2006509374 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, 0, 1, -3, 43006])
 
gp: E = ellinit([1, 0, 1, -3, 43006])
 
magma: E := EllipticCurve([1, 0, 1, -3, 43006]);
 
oscar: E = elliptic_curve([1, 0, 1, -3, 43006])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

Z\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(20,197)(-20, 197)1.64027501346547507452282113461.6402750134654750745228211346\infty

Integral points

(20,197) \left(-20, 197\right) , (20,178) \left(-20, -178\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  249690 249690  = 235729412 \cdot 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  799008000000-799008000000 = 121135672941-1 \cdot 2^{11} \cdot 3 \cdot 5^{6} \cdot 7 \cdot 29 \cdot 41
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  1771561799008000000 -\frac{1771561}{799008000000}  = 1211315671116291411-1 \cdot 2^{-11} \cdot 3^{-1} \cdot 5^{-6} \cdot 7^{-1} \cdot 11^{6} \cdot 29^{-1} \cdot 41^{-1}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 0.962768993339398935720820945590.96276899333939893572082094559
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.962768993339398935720820945590.96276899333939893572082094559
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.08075283151962241.0807528315196224
Szpiro ratio: σm\sigma_{m} ≈ 2.80507126437852562.8050712643785256

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 1.64027501346547507452282113461.6402750134654750745228211346
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.710822998613059514510671190260.71082299861305951451067119026
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 6 6  = 11(23)111 1\cdot1\cdot( 2 \cdot 3 )\cdot1\cdot1\cdot1
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 6.99567122172963339231428362076.9956712217296333923142836207
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

6.995671222L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.7108231.6402756126.995671222\displaystyle 6.995671222 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.710823 \cdot 1.640275 \cdot 6}{1^2} \approx 6.995671222

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 249690.2.a.t

qq2+q3+q4+q5q6q7q8+q9q10+q124q13+q14+q15+q165q17q18+6q19+O(q20) q - q^{2} + q^{3} + q^{4} + q^{5} - q^{6} - q^{7} - q^{8} + q^{9} - q^{10} + q^{12} - 4 q^{13} + q^{14} + q^{15} + q^{16} - 5 q^{17} - q^{18} + 6 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 422400
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is semistable. There are 6 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 11 I11I_{11} nonsplit multiplicative 1 1 11 11
33 11 I1I_{1} split multiplicative -1 1 1 1
55 66 I6I_{6} split multiplicative -1 1 6 6
77 11 I1I_{1} nonsplit multiplicative 1 1 1 1
2929 11 I1I_{1} nonsplit multiplicative 1 1 1 1
4141 11 I1I_{1} nonsplit multiplicative 1 1 1 1

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell.

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[114145, 2, 114145, 3], [149815, 2, 149815, 3], [199751, 2, 199750, 3], [13777, 2, 13777, 3], [1, 0, 2, 1], [1, 2, 0, 1], [1, 1, 199751, 0], [133169, 2, 133169, 3], [99877, 2, 99877, 3], [53593, 2, 53593, 3]]
 
GL(2,Integers(199752)).subgroup(gens)
 
Gens := [[114145, 2, 114145, 3], [149815, 2, 149815, 3], [199751, 2, 199750, 3], [13777, 2, 13777, 3], [1, 0, 2, 1], [1, 2, 0, 1], [1, 1, 199751, 0], [133169, 2, 133169, 3], [99877, 2, 99877, 3], [53593, 2, 53593, 3]];
 
sub<GL(2,Integers(199752))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 199752=23372941 199752 = 2^{3} \cdot 3 \cdot 7 \cdot 29 \cdot 41 , index 22, genus 00, and generators

(11414521141453),(14981521498153),(19975121997503),(137772137773),(1021),(1201),(111997510),(13316921331693),(998772998773),(535932535933)\left(\begin{array}{rr} 114145 & 2 \\ 114145 & 3 \end{array}\right),\left(\begin{array}{rr} 149815 & 2 \\ 149815 & 3 \end{array}\right),\left(\begin{array}{rr} 199751 & 2 \\ 199750 & 3 \end{array}\right),\left(\begin{array}{rr} 13777 & 2 \\ 13777 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 199751 & 0 \end{array}\right),\left(\begin{array}{rr} 133169 & 2 \\ 133169 & 3 \end{array}\right),\left(\begin{array}{rr} 99877 & 2 \\ 99877 & 3 \end{array}\right),\left(\begin{array}{rr} 53593 & 2 \\ 53593 & 3 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[199752])K:=\Q(E[199752]) is a degree-139663020480528384000139663020480528384000 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/199752Z)\GL_2(\Z/199752\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 nonsplit multiplicative 44 24969=372941 24969 = 3 \cdot 7 \cdot 29 \cdot 41
33 split multiplicative 44 16646=272941 16646 = 2 \cdot 7 \cdot 29 \cdot 41
55 split multiplicative 66 49938=2372941 49938 = 2 \cdot 3 \cdot 7 \cdot 29 \cdot 41
77 nonsplit multiplicative 88 35670=2352941 35670 = 2 \cdot 3 \cdot 5 \cdot 29 \cdot 41
1111 good 22 124845=3572941 124845 = 3 \cdot 5 \cdot 7 \cdot 29 \cdot 41
2929 nonsplit multiplicative 3030 8610=235741 8610 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 41
4141 nonsplit multiplicative 4242 6090=235729 6090 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 29

Isogenies

gp: ellisomat(E)
 

This curve has no rational isogenies. Its isogeny class 249690t consists of this curve only.

Twists

This elliptic curve is its own minimal quadratic twist.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
33 3.1.199752.1 Z/2Z\Z/2\Z not in database
66 6.0.7970276887147008.1 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
88 deg 8 Z/3Z\Z/3\Z not in database
1212 deg 12 Z/4Z\Z/4\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

No Iwasawa invariant data is available for this curve.

pp-adic regulators

pp-adic regulators are not yet computed for curves that are not Γ0\Gamma_0-optimal.