Properties

Label 25200dz
Number of curves $8$
Conductor $25200$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("dz1")
 
E.isogeny_class()
 

Elliptic curves in class 25200dz

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
25200.p7 25200dz1 \([0, 0, 0, 755925, 190620250]\) \(1023887723039/928972800\) \(-43342154956800000000\) \([2]\) \(589824\) \(2.4553\) \(\Gamma_0(N)\)-optimal
25200.p6 25200dz2 \([0, 0, 0, -3852075, 1706652250]\) \(135487869158881/51438240000\) \(2399902525440000000000\) \([2, 2]\) \(1179648\) \(2.8019\)  
25200.p5 25200dz3 \([0, 0, 0, -27180075, -53324099750]\) \(47595748626367201/1215506250000\) \(56710659600000000000000\) \([2, 2]\) \(2359296\) \(3.1485\)  
25200.p4 25200dz4 \([0, 0, 0, -54252075, 153763452250]\) \(378499465220294881/120530818800\) \(5623485881932800000000\) \([2]\) \(2359296\) \(3.1485\)  
25200.p8 25200dz5 \([0, 0, 0, 4571925, -170457227750]\) \(226523624554079/269165039062500\) \(-12558164062500000000000000\) \([2]\) \(4718592\) \(3.4950\)  
25200.p2 25200dz6 \([0, 0, 0, -432180075, -3458159099750]\) \(191342053882402567201/129708022500\) \(6051657497760000000000\) \([2, 2]\) \(4718592\) \(3.4950\)  
25200.p3 25200dz7 \([0, 0, 0, -429480075, -3503500199750]\) \(-187778242790732059201/4984939585440150\) \(-232577341298295638400000000\) \([2]\) \(9437184\) \(3.8416\)  
25200.p1 25200dz8 \([0, 0, 0, -6914880075, -221322257999750]\) \(783736670177727068275201/360150\) \(16803158400000000\) \([2]\) \(9437184\) \(3.8416\)  

Rank

sage: E.rank()
 

The elliptic curves in class 25200dz have rank \(1\).

Complex multiplication

The elliptic curves in class 25200dz do not have complex multiplication.

Modular form 25200.2.a.dz

sage: E.q_eigenform(10)
 
\(q - q^{7} - 4 q^{11} + 2 q^{13} + 2 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrrrrrr} 1 & 2 & 4 & 4 & 8 & 8 & 16 & 16 \\ 2 & 1 & 2 & 2 & 4 & 4 & 8 & 8 \\ 4 & 2 & 1 & 4 & 2 & 2 & 4 & 4 \\ 4 & 2 & 4 & 1 & 8 & 8 & 16 & 16 \\ 8 & 4 & 2 & 8 & 1 & 4 & 8 & 8 \\ 8 & 4 & 2 & 8 & 4 & 1 & 2 & 2 \\ 16 & 8 & 4 & 16 & 8 & 2 & 1 & 4 \\ 16 & 8 & 4 & 16 & 8 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.