y 2 = x 3 + 4571925 x − 170457227750 y^2=x^3+4571925x-170457227750 y 2 = x 3 + 4 5 7 1 9 2 5 x − 1 7 0 4 5 7 2 2 7 7 5 0
(homogenize , simplify )
y 2 z = x 3 + 4571925 x z 2 − 170457227750 z 3 y^2z=x^3+4571925xz^2-170457227750z^3 y 2 z = x 3 + 4 5 7 1 9 2 5 x z 2 − 1 7 0 4 5 7 2 2 7 7 5 0 z 3
(dehomogenize , simplify )
y 2 = x 3 + 4571925 x − 170457227750 y^2=x^3+4571925x-170457227750 y 2 = x 3 + 4 5 7 1 9 2 5 x − 1 7 0 4 5 7 2 2 7 7 5 0
(homogenize , minimize )
sage: E = EllipticCurve([0, 0, 0, 4571925, -170457227750])
gp: E = ellinit([0, 0, 0, 4571925, -170457227750])
magma: E := EllipticCurve([0, 0, 0, 4571925, -170457227750]);
oscar: E = elliptic_curve([0, 0, 0, 4571925, -170457227750])
sage: E.short_weierstrass_model()
magma: WeierstrassModel(E);
oscar: short_weierstrass_model(E)
Z ⊕ Z / 2 Z \Z \oplus \Z/{2}\Z Z ⊕ Z / 2 Z
magma: MordellWeilGroup(E);
P P P h ^ ( P ) \hat{h}(P) h ^ ( P ) Order
( 429114239 / 70225 , 5446039893138 / 18609625 ) (429114239/70225, 5446039893138/18609625) ( 4 2 9 1 1 4 2 3 9 / 7 0 2 2 5 , 5 4 4 6 0 3 9 8 9 3 1 3 8 / 1 8 6 0 9 6 2 5 ) 18.593333170615399999818234477 18.593333170615399999818234477 1 8 . 5 9 3 3 3 3 1 7 0 6 1 5 3 9 9 9 9 9 8 1 8 2 3 4 4 7 7 ∞ \infty ∞
( 5270 , 0 ) (5270, 0) ( 5 2 7 0 , 0 ) 0 0 0 2 2 2
( 5270 , 0 ) \left(5270, 0\right) ( 5 2 7 0 , 0 )
sage: E.integral_points()
magma: IntegralPoints(E);
Invariants
Conductor :
N N N
=
25200 25200 2 5 2 0 0 = 2 4 ⋅ 3 2 ⋅ 5 2 ⋅ 7 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7 2 4 ⋅ 3 2 ⋅ 5 2 ⋅ 7
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
oscar: conductor(E)
Discriminant :
Δ \Delta Δ
=
− 12558164062500000000000000 -12558164062500000000000000 − 1 2 5 5 8 1 6 4 0 6 2 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 = − 1 ⋅ 2 14 ⋅ 3 8 ⋅ 5 22 ⋅ 7 2 -1 \cdot 2^{14} \cdot 3^{8} \cdot 5^{22} \cdot 7^{2} − 1 ⋅ 2 1 4 ⋅ 3 8 ⋅ 5 2 2 ⋅ 7 2
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
oscar: discriminant(E)
j-invariant :
j j j
=
226523624554079 269165039062500 \frac{226523624554079}{269165039062500} 2 6 9 1 6 5 0 3 9 0 6 2 5 0 0 2 2 6 5 2 3 6 2 4 5 5 4 0 7 9 = 2 − 2 ⋅ 3 − 2 ⋅ 5 − 16 ⋅ 7 − 2 ⋅ 4 7 3 ⋅ 129 7 3 2^{-2} \cdot 3^{-2} \cdot 5^{-16} \cdot 7^{-2} \cdot 47^{3} \cdot 1297^{3} 2 − 2 ⋅ 3 − 2 ⋅ 5 − 1 6 ⋅ 7 − 2 ⋅ 4 7 3 ⋅ 1 2 9 7 3
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
oscar: j_invariant(E)
Endomorphism ring :
E n d ( E ) \mathrm{End}(E) E n d ( E ) = Z \Z Z
Geometric endomorphism ring :
E n d ( E Q ‾ ) \mathrm{End}(E_{\overline{\Q}}) E n d ( E Q )
=
Z \Z Z
(no potential complex multiplication )
sage: E.has_cm()
magma: HasComplexMultiplication(E);
Sato-Tate group :
S T ( E ) \mathrm{ST}(E) S T ( E ) = S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
Faltings height :
h F a l t i n g s h_{\mathrm{Faltings}} h F a l t i n g s ≈ 3.4950281077266407346596565932 3.4950281077266407346596565932 3 . 4 9 5 0 2 8 1 0 7 7 2 6 6 4 0 7 3 4 6 5 9 6 5 6 5 9 3 2
gp: ellheight(E)
magma: FaltingsHeight(E);
oscar: faltings_height(E)
Stable Faltings height :
h s t a b l e h_{\mathrm{stable}} h s t a b l e ≈ 1.4478558266155903922444221867 1.4478558266155903922444221867 1 . 4 4 7 8 5 5 8 2 6 6 1 5 5 9 0 3 9 2 2 4 4 4 2 2 1 8 6 7
magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
a b c abc a b c quality :
Q Q Q ≈ 1.1083142308531486 1.1083142308531486 1 . 1 0 8 3 1 4 2 3 0 8 5 3 1 4 8 6
Szpiro ratio :
σ m \sigma_{m} σ m ≈ 6.438009461838578 6.438009461838578 6 . 4 3 8 0 0 9 4 6 1 8 3 8 5 7 8
Analytic rank :
r a n r_{\mathrm{an}} r a n = 1 1 1
sage: E.analytic_rank()
gp: ellanalyticrank(E)
magma: AnalyticRank(E);
Mordell-Weil rank :
r r r = 1 1 1
sage: E.rank()
gp: [lower,upper] = ellrank(E)
magma: Rank(E);
Regulator :
R e g ( E / Q ) \mathrm{Reg}(E/\Q) R e g ( E / Q ) ≈ 18.593333170615399999818234477 18.593333170615399999818234477 1 8 . 5 9 3 3 3 3 1 7 0 6 1 5 3 9 9 9 9 9 8 1 8 2 3 4 4 7 7
sage: E.regulator()
gp: G = E.gen \\ if available
matdet(ellheightmatrix(E,G))
magma: Regulator(E);
Real period :
Ω \Omega Ω ≈ 0.033111845517750827435686900450 0.033111845517750827435686900450 0 . 0 3 3 1 1 1 8 4 5 5 1 7 7 5 0 8 2 7 4 3 5 6 8 6 9 0 0 4 5 0
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
Tamagawa product :
∏ p c p \prod_{p}c_p ∏ p c p = 32 32 3 2
= 2 ⋅ 2 ⋅ 2 2 ⋅ 2 2\cdot2\cdot2^{2}\cdot2 2 ⋅ 2 ⋅ 2 2 ⋅ 2
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
Torsion order :
# E ( Q ) t o r \#E(\Q)_{\mathrm{tor}} # E ( Q ) t o r = 2 2 2
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
Special value :
L ′ ( E , 1 ) L'(E,1) L ′ ( E , 1 ) ≈ 4.9252766048439145062440684413 4.9252766048439145062440684413 4 . 9 2 5 2 7 6 6 0 4 8 4 3 9 1 4 5 0 6 2 4 4 0 6 8 4 4 1 3
sage: r = E.rank();
E.lseries().dokchitser().derivative(1,r)/r.factorial()
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
Analytic order of Ш :
Шa n {}_{\mathrm{an}} a n
≈
1 1 1
(rounded )
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
4.925276605 ≈ L ′ ( E , 1 ) = # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p # E ( Q ) t o r 2 ≈ 1 ⋅ 0.033112 ⋅ 18.593333 ⋅ 32 2 2 ≈ 4.925276605 \begin{aligned} 4.925276605 \approx L'(E,1) & = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.033112 \cdot 18.593333 \cdot 32}{2^2} \\ & \approx 4.925276605\end{aligned} 4 . 9 2 5 2 7 6 6 0 5 ≈ L ′ ( E , 1 ) = # E ( Q ) t o r 2 # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p ≈ 2 2 1 ⋅ 0 . 0 3 3 1 1 2 ⋅ 1 8 . 5 9 3 3 3 3 ⋅ 3 2 ≈ 4 . 9 2 5 2 7 6 6 0 5
sage: # self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
E = EllipticCurve([0, 0, 0, 4571925, -170457227750]); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
magma: /* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
E := EllipticCurve([0, 0, 0, 4571925, -170457227750]); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
Modular form
25200.2.a.p
q − q 7 − 4 q 11 + 2 q 13 + 2 q 17 − 4 q 19 + O ( q 20 ) q - q^{7} - 4 q^{11} + 2 q^{13} + 2 q^{17} - 4 q^{19} + O(q^{20}) q − q 7 − 4 q 1 1 + 2 q 1 3 + 2 q 1 7 − 4 q 1 9 + O ( q 2 0 )
sage: E.q_eigenform(20)
gp: \\ actual modular form, use for small N
[mf,F] = mffromell(E)
Ser(mfcoefs(mf,20),q)
\\ or just the series
Ser(ellan(E,20),q)*q
magma: ModularForm(E);
For more coefficients, see the Downloads section to the right.
This elliptic curve is not semistable .
There
are 4 primes p p p
of bad reduction :
sage: E.local_data()
gp: ellglobalred(E)[5]
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
The ℓ \ell ℓ -adic Galois representation has maximal image
for all primes ℓ \ell ℓ except those listed in the table below.
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
sage: gens = [[1, 8, 0, 421], [1, 0, 32, 1], [25, 16, 1624, 2249], [1, 32, 0, 1], [3353, 3344, 585, 2567], [1343, 3344, 0, 3359], [985, 16, 1974, 2473], [1091, 3336, 3234, 475], [3329, 32, 3328, 33], [1, 32, 4, 129]]
GL(2,Integers(3360)).subgroup(gens)
magma: Gens := [[1, 8, 0, 421], [1, 0, 32, 1], [25, 16, 1624, 2249], [1, 32, 0, 1], [3353, 3344, 585, 2567], [1343, 3344, 0, 3359], [985, 16, 1974, 2473], [1091, 3336, 3234, 475], [3329, 32, 3328, 33], [1, 32, 4, 129]];
sub<GL(2,Integers(3360))|Gens>;
The image H : = ρ E ( Gal ( Q ‾ / Q ) ) H:=\rho_E(\Gal(\overline{\Q}/\Q)) H : = ρ E ( G a l ( Q / Q ) ) of the adelic Galois representation has
level 3360 = 2 5 ⋅ 3 ⋅ 5 ⋅ 7 3360 = 2^{5} \cdot 3 \cdot 5 \cdot 7 3 3 6 0 = 2 5 ⋅ 3 ⋅ 5 ⋅ 7 , index 768 768 7 6 8 , genus 13 13 1 3 , and generators
( 1 8 0 421 ) , ( 1 0 32 1 ) , ( 25 16 1624 2249 ) , ( 1 32 0 1 ) , ( 3353 3344 585 2567 ) , ( 1343 3344 0 3359 ) , ( 985 16 1974 2473 ) , ( 1091 3336 3234 475 ) , ( 3329 32 3328 33 ) , ( 1 32 4 129 ) \left(\begin{array}{rr}
1 & 8 \\
0 & 421
\end{array}\right),\left(\begin{array}{rr}
1 & 0 \\
32 & 1
\end{array}\right),\left(\begin{array}{rr}
25 & 16 \\
1624 & 2249
\end{array}\right),\left(\begin{array}{rr}
1 & 32 \\
0 & 1
\end{array}\right),\left(\begin{array}{rr}
3353 & 3344 \\
585 & 2567
\end{array}\right),\left(\begin{array}{rr}
1343 & 3344 \\
0 & 3359
\end{array}\right),\left(\begin{array}{rr}
985 & 16 \\
1974 & 2473
\end{array}\right),\left(\begin{array}{rr}
1091 & 3336 \\
3234 & 475
\end{array}\right),\left(\begin{array}{rr}
3329 & 32 \\
3328 & 33
\end{array}\right),\left(\begin{array}{rr}
1 & 32 \\
4 & 129
\end{array}\right) ( 1 0 8 4 2 1 ) , ( 1 3 2 0 1 ) , ( 2 5 1 6 2 4 1 6 2 2 4 9 ) , ( 1 0 3 2 1 ) , ( 3 3 5 3 5 8 5 3 3 4 4 2 5 6 7 ) , ( 1 3 4 3 0 3 3 4 4 3 3 5 9 ) , ( 9 8 5 1 9 7 4 1 6 2 4 7 3 ) , ( 1 0 9 1 3 2 3 4 3 3 3 6 4 7 5 ) , ( 3 3 2 9 3 3 2 8 3 2 3 3 ) , ( 1 4 3 2 1 2 9 ) .
The torsion field K : = Q ( E [ 3360 ] ) K:=\Q(E[3360]) K : = Q ( E [ 3 3 6 0 ] ) is a degree-23781703680 23781703680 2 3 7 8 1 7 0 3 6 8 0 Galois extension of Q \Q Q with Gal ( K / Q ) \Gal(K/\Q) G a l ( K / Q ) isomorphic to the projection of H H H to GL 2 ( Z / 3360 Z ) \GL_2(\Z/3360\Z) GL 2 ( Z / 3 3 6 0 Z ) .
The table below list all primes ℓ \ell ℓ for which the Serre invariants associated to the mod-ℓ \ell ℓ Galois representation are exceptional.
ℓ \ell ℓ
Reduction type
Serre weight
Serre conductor
2 2 2
additive
2 2 2
225 = 3 2 ⋅ 5 2 225 = 3^{2} \cdot 5^{2} 2 2 5 = 3 2 ⋅ 5 2
3 3 3
additive
8 8 8
2800 = 2 4 ⋅ 5 2 ⋅ 7 2800 = 2^{4} \cdot 5^{2} \cdot 7 2 8 0 0 = 2 4 ⋅ 5 2 ⋅ 7
5 5 5
additive
18 18 1 8
1008 = 2 4 ⋅ 3 2 ⋅ 7 1008 = 2^{4} \cdot 3^{2} \cdot 7 1 0 0 8 = 2 4 ⋅ 3 2 ⋅ 7
7 7 7
nonsplit multiplicative
8 8 8
3600 = 2 4 ⋅ 3 2 ⋅ 5 2 3600 = 2^{4} \cdot 3^{2} \cdot 5^{2} 3 6 0 0 = 2 4 ⋅ 3 2 ⋅ 5 2
gp: ellisomat(E)
This curve has non-trivial cyclic isogenies of degree d d d for d = d= d =
2, 4 and 8.
Its isogeny class 25200dz
consists of 8 curves linked by isogenies of
degrees dividing 16.
The minimal quadratic twist of this elliptic curve is
210e6 , its twist by 60 60 6 0 .
The number fields K K K of degree less than 24 such that
E ( K ) t o r s E(K)_{\rm tors} E ( K ) t o r s is strictly larger than E ( Q ) t o r s E(\Q)_{\rm tors} E ( Q ) t o r s
≅ Z / 2 Z \cong \Z/{2}\Z ≅ Z / 2 Z
are as follows:
[ K : Q ] [K:\Q] [ K : Q ]
K K K
E ( K ) t o r s E(K)_{\rm tors} E ( K ) t o r s
Base change curve
2 2 2
Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 )
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z \oplus \Z/2\Z Z / 2 Z ⊕ Z / 2 Z
not in database
2 2 2
Q ( 15 ) \Q(\sqrt{15}) Q ( 1 5 )
Z / 4 Z \Z/4\Z Z / 4 Z
not in database
2 2 2
Q ( − 15 ) \Q(\sqrt{-15}) Q ( − 1 5 )
Z / 4 Z \Z/4\Z Z / 4 Z
not in database
4 4 4
Q ( i , 15 ) \Q(i, \sqrt{15}) Q ( i , 1 5 )
Z / 2 Z ⊕ Z / 4 Z \Z/2\Z \oplus \Z/4\Z Z / 2 Z ⊕ Z / 4 Z
not in database
4 4 4
Q ( 6 , 10 ) \Q(\sqrt{6}, \sqrt{10}) Q ( 6 , 1 0 )
Z / 8 Z \Z/8\Z Z / 8 Z
not in database
4 4 4
Q ( − 6 , − 10 ) \Q(\sqrt{-6}, \sqrt{-10}) Q ( − 6 , − 1 0 )
Z / 8 Z \Z/8\Z Z / 8 Z
not in database
4 4 4
Q ( − 14 , − 15 ) \Q(\sqrt{-14}, \sqrt{-15}) Q ( − 1 4 , − 1 5 )
Z / 8 Z \Z/8\Z Z / 8 Z
not in database
4 4 4
Q ( 14 , − 15 ) \Q(\sqrt{14}, \sqrt{-15}) Q ( 1 4 , − 1 5 )
Z / 8 Z \Z/8\Z Z / 8 Z
not in database
8 8 8
8.0.31116960000.4
Z / 4 Z ⊕ Z / 4 Z \Z/4\Z \oplus \Z/4\Z Z / 4 Z ⊕ Z / 4 Z
not in database
8 8 8
8.0.7965941760000.41
Z / 2 Z ⊕ Z / 8 Z \Z/2\Z \oplus \Z/8\Z Z / 2 Z ⊕ Z / 8 Z
not in database
8 8 8
8.0.3317760000.5
Z / 2 Z ⊕ Z / 8 Z \Z/2\Z \oplus \Z/8\Z Z / 2 Z ⊕ Z / 8 Z
not in database
8 8 8
8.4.18353529815040000.54
Z / 16 Z \Z/16\Z Z / 1 6 Z
not in database
8 8 8
8.0.7644119040000.58
Z / 16 Z \Z/16\Z Z / 1 6 Z
not in database
8 8 8
deg 8
Z / 6 Z \Z/6\Z Z / 6 Z
not in database
16 16 1 6
16.0.63456228123711897600000000.9
Z / 4 Z ⊕ Z / 8 Z \Z/4\Z \oplus \Z/8\Z Z / 4 Z ⊕ Z / 8 Z
not in database
16 16 1 6
deg 16
Z / 16 Z \Z/16\Z Z / 1 6 Z
not in database
16 16 1 6
deg 16
Z / 16 Z \Z/16\Z Z / 1 6 Z
not in database
16 16 1 6
deg 16
Z / 2 Z ⊕ Z / 16 Z \Z/2\Z \oplus \Z/16\Z Z / 2 Z ⊕ Z / 1 6 Z
not in database
16 16 1 6
deg 16
Z / 2 Z ⊕ Z / 16 Z \Z/2\Z \oplus \Z/16\Z Z / 2 Z ⊕ Z / 1 6 Z
not in database
16 16 1 6
deg 16
Z / 2 Z ⊕ Z / 6 Z \Z/2\Z \oplus \Z/6\Z Z / 2 Z ⊕ Z / 6 Z
not in database
16 16 1 6
deg 16
Z / 12 Z \Z/12\Z Z / 1 2 Z
not in database
16 16 1 6
deg 16
Z / 12 Z \Z/12\Z Z / 1 2 Z
not in database
We only show fields where the torsion growth is primitive .
For fields not in the database, click on the degree shown to reveal the defining polynomial.
An entry - indicates that the invariants are not computed because the reduction is additive.
p p p -adic regulators
p p p -adic regulators are not yet computed for curves that are not Γ 0 \Gamma_0 Γ 0 -optimal.