Properties

Label 252b
Number of curves $2$
Conductor $252$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("b1")
 
E.isogeny_class()
 

Elliptic curves in class 252b

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
252.a2 252b1 \([0, 0, 0, -12, 65]\) \(-16384/147\) \(-1714608\) \([2]\) \(48\) \(-0.12125\) \(\Gamma_0(N)\)-optimal
252.a1 252b2 \([0, 0, 0, -327, 2270]\) \(20720464/63\) \(11757312\) \([2]\) \(96\) \(0.22532\)  

Rank

sage: E.rank()
 

The elliptic curves in class 252b have rank \(1\).

Complex multiplication

The elliptic curves in class 252b do not have complex multiplication.

Modular form 252.2.a.b

sage: E.q_eigenform(10)
 
\(q - 4 q^{5} - q^{7} - 2 q^{11} - 6 q^{13} + 4 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.