Show commands:
SageMath
E = EllipticCurve("s1")
E.isogeny_class()
Elliptic curves in class 2550.s
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
2550.s1 | 2550x2 | \([1, 1, 1, -7253, 234731]\) | \(337575153545189/2448\) | \(306000\) | \([2]\) | \(2560\) | \(0.64889\) | |
2550.s2 | 2550x1 | \([1, 1, 1, -453, 3531]\) | \(-82256120549/221952\) | \(-27744000\) | \([2]\) | \(1280\) | \(0.30231\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 2550.s have rank \(1\).
Complex multiplication
The elliptic curves in class 2550.s do not have complex multiplication.Modular form 2550.2.a.s
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.