Properties

Label 2550.t
Number of curves 11
Conductor 25502550
CM no
Rank 00

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("t1") E.isogeny_class()
 

Elliptic curves in class 2550.t

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
2550.t1 2550z1 [1,1,1,8795013,12177716469][1, 1, 1, -8795013, -12177716469] 192607474931043120625/52443022624653312-192607474931043120625/52443022624653312 20485555712755200000000-20485555712755200000000 [][] 289800289800 2.99732.9973 Γ0(N)\Gamma_0(N)-optimal

Rank

Copy content sage:E.rank()
 

The elliptic curve 2550.t1 has rank 00.

L-function data

 
Bad L-factors:
Prime L-Factor
221T1 - T
331+T1 + T
5511
17171T1 - T
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
77 1+4T+7T2 1 + 4 T + 7 T^{2} 1.7.e
1111 12T+11T2 1 - 2 T + 11 T^{2} 1.11.ac
1313 1+2T+13T2 1 + 2 T + 13 T^{2} 1.13.c
1919 18T+19T2 1 - 8 T + 19 T^{2} 1.19.ai
2323 1+T+23T2 1 + T + 23 T^{2} 1.23.b
2929 1+4T+29T2 1 + 4 T + 29 T^{2} 1.29.e
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 2550.t do not have complex multiplication.

Modular form 2550.2.a.t

Copy content sage:E.q_eigenform(10)
 
q+q2q3+q4q64q7+q8+q9+2q11q122q134q14+q16+q17+q18+8q19+O(q20)q + q^{2} - q^{3} + q^{4} - q^{6} - 4 q^{7} + q^{8} + q^{9} + 2 q^{11} - q^{12} - 2 q^{13} - 4 q^{14} + q^{16} + q^{17} + q^{18} + 8 q^{19} + O(q^{20}) Copy content Toggle raw display