Show commands:
SageMath
E = EllipticCurve("t1")
E.isogeny_class()
Elliptic curves in class 2550.t
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
2550.t1 | 2550z1 | \([1, 1, 1, -8795013, -12177716469]\) | \(-192607474931043120625/52443022624653312\) | \(-20485555712755200000000\) | \([]\) | \(289800\) | \(2.9973\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curve 2550.t1 has rank \(0\).
Complex multiplication
The elliptic curves in class 2550.t do not have complex multiplication.Modular form 2550.2.a.t
sage: E.q_eigenform(10)