Properties

Label 2550.t
Number of curves $1$
Conductor $2550$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("t1")
 
E.isogeny_class()
 

Elliptic curves in class 2550.t

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
2550.t1 2550z1 \([1, 1, 1, -8795013, -12177716469]\) \(-192607474931043120625/52443022624653312\) \(-20485555712755200000000\) \([]\) \(289800\) \(2.9973\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 2550.t1 has rank \(0\).

Complex multiplication

The elliptic curves in class 2550.t do not have complex multiplication.

Modular form 2550.2.a.t

sage: E.q_eigenform(10)
 
\(q + q^{2} - q^{3} + q^{4} - q^{6} - 4 q^{7} + q^{8} + q^{9} + 2 q^{11} - q^{12} - 2 q^{13} - 4 q^{14} + q^{16} + q^{17} + q^{18} + 8 q^{19} + O(q^{20})\) Copy content Toggle raw display