sage:E = EllipticCurve("t1")
E.isogeny_class()
Elliptic curves in class 2550.t
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
2550.t1 |
2550z1 |
[1,1,1,−8795013,−12177716469] |
−192607474931043120625/52443022624653312 |
−20485555712755200000000 |
[] |
289800 |
2.9973
|
Γ0(N)-optimal |
sage:E.rank()
The elliptic curve 2550.t1 has
rank 0.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1−T |
3 | 1+T |
5 | 1 |
17 | 1−T |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
7 |
1+4T+7T2 |
1.7.e
|
11 |
1−2T+11T2 |
1.11.ac
|
13 |
1+2T+13T2 |
1.13.c
|
19 |
1−8T+19T2 |
1.19.ai
|
23 |
1+T+23T2 |
1.23.b
|
29 |
1+4T+29T2 |
1.29.e
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 2550.t do not have complex multiplication.
sage:E.q_eigenform(10)