Properties

Label 2550.d
Number of curves 44
Conductor 25502550
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("d1")
 
E.isogeny_class()
 

Elliptic curves in class 2550.d

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
2550.d1 2550a3 [1,1,0,4650,123750][1, 1, 0, -4650, -123750] 711882749089/1721250711882749089/1721250 2689453125026894531250 [2][2] 30723072 0.880090.88009  
2550.d2 2550a4 [1,1,0,4150,100750][1, 1, 0, -4150, 100750] 506071034209/2505630506071034209/2505630 3915046875039150468750 [2][2] 30723072 0.880090.88009  
2550.d3 2550a2 [1,1,0,400,500][1, 1, 0, -400, -500] 454756609/260100454756609/260100 40640625004064062500 [2,2][2, 2] 15361536 0.533520.53352  
2550.d4 2550a1 [1,1,0,100,0][1, 1, 0, 100, 0] 6967871/40806967871/4080 63750000-63750000 [2][2] 768768 0.186950.18695 Γ0(N)\Gamma_0(N)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 2550.d have rank 11.

Complex multiplication

The elliptic curves in class 2550.d do not have complex multiplication.

Modular form 2550.2.a.d

sage: E.q_eigenform(10)
 
qq2q3+q4+q6q8+q9+4q11q122q13+q16q17q184q19+O(q20)q - q^{2} - q^{3} + q^{4} + q^{6} - q^{8} + q^{9} + 4 q^{11} - q^{12} - 2 q^{13} + q^{16} - q^{17} - q^{18} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1424412422124421)\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.