E = EllipticCurve("d1")
E.isogeny_class()
Elliptic curves in class 2550.d
sage: E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
2550.d1 |
2550a3 |
[1,1,0,−4650,−123750] |
711882749089/1721250 |
26894531250 |
[2] |
3072 |
0.88009
|
|
2550.d2 |
2550a4 |
[1,1,0,−4150,100750] |
506071034209/2505630 |
39150468750 |
[2] |
3072 |
0.88009
|
|
2550.d3 |
2550a2 |
[1,1,0,−400,−500] |
454756609/260100 |
4064062500 |
[2,2] |
1536 |
0.53352
|
|
2550.d4 |
2550a1 |
[1,1,0,100,0] |
6967871/4080 |
−63750000 |
[2] |
768 |
0.18695
|
Γ0(N)-optimal |
The elliptic curves in class 2550.d have
rank 1.
The elliptic curves in class 2550.d do not have complex multiplication.
sage: E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
⎝⎜⎜⎛1424412422124421⎠⎟⎟⎞
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.