Properties

Label 2550b1
Conductor 25502550
Discriminant 55080000005508000000
j-invariant 4354703137352512 \frac{4354703137}{352512}
CM no
Rank 11
Torsion structure Z/2Z\Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy=x3+x2850x+8500y^2+xy=x^3+x^2-850x+8500 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz=x3+x2z850xz2+8500z3y^2z+xyz=x^3+x^2z-850xz^2+8500z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x31102275x+413106750y^2=x^3-1102275x+413106750 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, 1, 0, -850, 8500])
 
gp: E = ellinit([1, 1, 0, -850, 8500])
 
magma: E := EllipticCurve([1, 1, 0, -850, 8500]);
 
oscar: E = elliptic_curve([1, 1, 0, -850, 8500])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

ZZ/2Z\Z \oplus \Z/{2}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(4,70)(4, 70)0.764002658700622672255616415490.76400265870062267225561641549\infty
(20,10)(20, -10)0022

Integral points

(5,115) \left(-5, 115\right) , (5,110) \left(-5, -110\right) , (4,70) \left(4, 70\right) , (4,74) \left(4, -74\right) , (20,10) \left(20, -10\right) , (21,11) \left(21, 11\right) , (21,32) \left(21, -32\right) , (420,8390) \left(420, 8390\right) , (420,8810) \left(420, -8810\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  2550 2550  = 2352172 \cdot 3 \cdot 5^{2} \cdot 17
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  55080000005508000000 = 283456172^{8} \cdot 3^{4} \cdot 5^{6} \cdot 17
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  4354703137352512 \frac{4354703137}{352512}  = 28341712337132^{-8} \cdot 3^{-4} \cdot 17^{-1} \cdot 23^{3} \cdot 71^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 0.612076471018604477412358541110.61207647101860447741235854111
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.19264248519844570988802112550-0.19264248519844570988802112550
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.0519151920596381.051915192059638
Szpiro ratio: σm\sigma_{m} ≈ 4.0606532867796614.060653286779661

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 0.764002658700622672255616415490.76400265870062267225561641549
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 1.32346417254179149946248028401.3234641725417914994624802840
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 8 8  = 2221 2\cdot2\cdot2\cdot1
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 22
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 2.02226029303389665374387733612.0222602930338966537438773361
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

2.022260293L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor211.3234640.7640038222.022260293\displaystyle 2.022260293 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 1.323464 \cdot 0.764003 \cdot 8}{2^2} \approx 2.022260293

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   2550.2.a.c

qq2q3+q4+q6q8+q94q11q12+2q13+q16q17q18+4q19+O(q20) q - q^{2} - q^{3} + q^{4} + q^{6} - q^{8} + q^{9} - 4 q^{11} - q^{12} + 2 q^{13} + q^{16} - q^{17} - q^{18} + 4 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 2048
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 4 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 22 I8I_{8} nonsplit multiplicative 1 1 8 8
33 22 I4I_{4} nonsplit multiplicative 1 1 4 4
55 22 I0I_0^{*} additive 1 2 6 0
1717 11 I1I_{1} nonsplit multiplicative 1 1 1 1

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2B 16.48.0.101

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[15, 2, 1262, 1347], [543, 0, 0, 1359], [1, 16, 0, 1], [1345, 16, 1344, 17], [1, 560, 340, 341], [1201, 560, 1050, 1311], [5, 4, 1356, 1357], [1, 0, 16, 1], [296, 545, 815, 826]]
 
GL(2,Integers(1360)).subgroup(gens)
 
Gens := [[15, 2, 1262, 1347], [543, 0, 0, 1359], [1, 16, 0, 1], [1345, 16, 1344, 17], [1, 560, 340, 341], [1201, 560, 1050, 1311], [5, 4, 1356, 1357], [1, 0, 16, 1], [296, 545, 815, 826]];
 
sub<GL(2,Integers(1360))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 1360=24517 1360 = 2^{4} \cdot 5 \cdot 17 , index 192192, genus 11, and generators

(15212621347),(543001359),(11601),(134516134417),(1560340341),(120156010501311),(5413561357),(10161),(296545815826)\left(\begin{array}{rr} 15 & 2 \\ 1262 & 1347 \end{array}\right),\left(\begin{array}{rr} 543 & 0 \\ 0 & 1359 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1345 & 16 \\ 1344 & 17 \end{array}\right),\left(\begin{array}{rr} 1 & 560 \\ 340 & 341 \end{array}\right),\left(\begin{array}{rr} 1201 & 560 \\ 1050 & 1311 \end{array}\right),\left(\begin{array}{rr} 5 & 4 \\ 1356 & 1357 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 16 & 1 \end{array}\right),\left(\begin{array}{rr} 296 & 545 \\ 815 & 826 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[1360])K:=\Q(E[1360]) is a degree-48129638404812963840 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/1360Z)\GL_2(\Z/1360\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 nonsplit multiplicative 44 425=5217 425 = 5^{2} \cdot 17
33 nonsplit multiplicative 44 850=25217 850 = 2 \cdot 5^{2} \cdot 17
55 additive 1414 102=2317 102 = 2 \cdot 3 \cdot 17
1717 nonsplit multiplicative 1818 150=2352 150 = 2 \cdot 3 \cdot 5^{2}

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2, 4 and 8.
Its isogeny class 2550b consists of 6 curves linked by isogenies of degrees dividing 8.

Twists

The minimal quadratic twist of this elliptic curve is 102b1, its twist by 55.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/2Z\cong \Z/{2}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(17)\Q(\sqrt{17}) Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
22 Q(85)\Q(\sqrt{85}) Z/4Z\Z/4\Z not in database
22 Q(5)\Q(\sqrt{5}) Z/8Z\Z/8\Z not in database
44 Q(5,17)\Q(\sqrt{5}, \sqrt{17}) Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
88 8.0.3862011040000.12 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 8.0.3862011040000.21 Z/8Z\Z/8\Z not in database
88 8.0.59927040000.46 Z/16Z\Z/16\Z not in database
88 8.2.147954945870000.11 Z/6Z\Z/6\Z not in database
1616 deg 16 Z/4ZZ/8Z\Z/4\Z \oplus \Z/8\Z not in database
1616 deg 16 Z/2ZZ/16Z\Z/2\Z \oplus \Z/16\Z not in database
1616 deg 16 Z/2ZZ/16Z\Z/2\Z \oplus \Z/16\Z not in database
1616 deg 16 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
1616 deg 16 Z/12Z\Z/12\Z not in database
1616 deg 16 Z/24Z\Z/24\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type nonsplit nonsplit add ss ord ord nonsplit ord ss ord ord ord ord ord ss
λ\lambda-invariant(s) 3 7 - 1,1 1 1 1 1 1,1 1 3 1 1 1 1,1
μ\mu-invariant(s) 0 0 - 0,0 0 0 0 0 0,0 0 0 0 0 0 0,0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

Note: pp-adic regulator data only exists for primes p5p\ge 5 of good ordinary reduction.