E = EllipticCurve("k1")
E.isogeny_class()
Elliptic curves in class 2550k
sage: E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
2550.n3 |
2550k1 |
[1,0,1,−2526,42448] |
114013572049/15667200 |
244800000000 |
[2] |
4608 |
0.91210
|
Γ0(N)-optimal |
2550.n2 |
2550k2 |
[1,0,1,−10526,−373552] |
8253429989329/936360000 |
14630625000000 |
[2,2] |
9216 |
1.2587
|
|
2550.n1 |
2550k3 |
[1,0,1,−163526,−25465552] |
30949975477232209/478125000 |
7470703125000 |
[2] |
18432 |
1.6053
|
|
2550.n4 |
2550k4 |
[1,0,1,14474,−1873552] |
21464092074671/109596256200 |
−1712441503125000 |
[2] |
18432 |
1.6053
|
|
The elliptic curves in class 2550k have
rank 0.
The elliptic curves in class 2550k do not have complex multiplication.
sage: E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
⎝⎜⎜⎛1244212242144241⎠⎟⎟⎞
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.