Properties

Label 2550k
Number of curves 44
Conductor 25502550
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("k1")
 
E.isogeny_class()
 

Elliptic curves in class 2550k

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
2550.n3 2550k1 [1,0,1,2526,42448][1, 0, 1, -2526, 42448] 114013572049/15667200114013572049/15667200 244800000000244800000000 [2][2] 46084608 0.912100.91210 Γ0(N)\Gamma_0(N)-optimal
2550.n2 2550k2 [1,0,1,10526,373552][1, 0, 1, -10526, -373552] 8253429989329/9363600008253429989329/936360000 1463062500000014630625000000 [2,2][2, 2] 92169216 1.25871.2587  
2550.n1 2550k3 [1,0,1,163526,25465552][1, 0, 1, -163526, -25465552] 30949975477232209/47812500030949975477232209/478125000 74707031250007470703125000 [2][2] 1843218432 1.60531.6053  
2550.n4 2550k4 [1,0,1,14474,1873552][1, 0, 1, 14474, -1873552] 21464092074671/10959625620021464092074671/109596256200 1712441503125000-1712441503125000 [2][2] 1843218432 1.60531.6053  

Rank

sage: E.rank()
 

The elliptic curves in class 2550k have rank 00.

Complex multiplication

The elliptic curves in class 2550k do not have complex multiplication.

Modular form 2550.2.a.k

sage: E.q_eigenform(10)
 
qq2+q3+q4q6+4q7q8+q94q11+q12+2q134q14+q16q17q184q19+O(q20)q - q^{2} + q^{3} + q^{4} - q^{6} + 4 q^{7} - q^{8} + q^{9} - 4 q^{11} + q^{12} + 2 q^{13} - 4 q^{14} + q^{16} - q^{17} - q^{18} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1244212242144241)\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.