Properties

Label 2550v
Number of curves $4$
Conductor $2550$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("v1")
 
E.isogeny_class()
 

Elliptic curves in class 2550v

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
2550.u2 2550v1 \([1, 1, 1, -6388, 193781]\) \(1845026709625/793152\) \(12393000000\) \([2]\) \(3456\) \(0.89684\) \(\Gamma_0(N)\)-optimal
2550.u3 2550v2 \([1, 1, 1, -5388, 257781]\) \(-1107111813625/1228691592\) \(-19198306125000\) \([2]\) \(6912\) \(1.2434\)  
2550.u1 2550v3 \([1, 1, 1, -18763, -755719]\) \(46753267515625/11591221248\) \(181112832000000\) \([2]\) \(10368\) \(1.4461\)  
2550.u4 2550v4 \([1, 1, 1, 45237, -4723719]\) \(655215969476375/1001033261568\) \(-15641144712000000\) \([2]\) \(20736\) \(1.7927\)  

Rank

sage: E.rank()
 

The elliptic curves in class 2550v have rank \(1\).

Complex multiplication

The elliptic curves in class 2550v do not have complex multiplication.

Modular form 2550.2.a.v

sage: E.q_eigenform(10)
 
\(q + q^{2} - q^{3} + q^{4} - q^{6} - 2 q^{7} + q^{8} + q^{9} - q^{12} - 2 q^{13} - 2 q^{14} + q^{16} + q^{17} + q^{18} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.