Properties

Label 2550v
Number of curves 44
Conductor 25502550
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("v1")
 
E.isogeny_class()
 

Elliptic curves in class 2550v

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
2550.u2 2550v1 [1,1,1,6388,193781][1, 1, 1, -6388, 193781] 1845026709625/7931521845026709625/793152 1239300000012393000000 [2][2] 34563456 0.896840.89684 Γ0(N)\Gamma_0(N)-optimal
2550.u3 2550v2 [1,1,1,5388,257781][1, 1, 1, -5388, 257781] 1107111813625/1228691592-1107111813625/1228691592 19198306125000-19198306125000 [2][2] 69126912 1.24341.2434  
2550.u1 2550v3 [1,1,1,18763,755719][1, 1, 1, -18763, -755719] 46753267515625/1159122124846753267515625/11591221248 181112832000000181112832000000 [2][2] 1036810368 1.44611.4461  
2550.u4 2550v4 [1,1,1,45237,4723719][1, 1, 1, 45237, -4723719] 655215969476375/1001033261568655215969476375/1001033261568 15641144712000000-15641144712000000 [2][2] 2073620736 1.79271.7927  

Rank

sage: E.rank()
 

The elliptic curves in class 2550v have rank 11.

Complex multiplication

The elliptic curves in class 2550v do not have complex multiplication.

Modular form 2550.2.a.v

sage: E.q_eigenform(10)
 
q+q2q3+q4q62q7+q8+q9q122q132q14+q16+q17+q184q19+O(q20)q + q^{2} - q^{3} + q^{4} - q^{6} - 2 q^{7} + q^{8} + q^{9} - q^{12} - 2 q^{13} - 2 q^{14} + q^{16} + q^{17} + q^{18} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1236216336126321)\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.