E = EllipticCurve("v1")
E.isogeny_class()
Elliptic curves in class 2550v
sage: E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
2550.u2 |
2550v1 |
[1,1,1,−6388,193781] |
1845026709625/793152 |
12393000000 |
[2] |
3456 |
0.89684
|
Γ0(N)-optimal |
2550.u3 |
2550v2 |
[1,1,1,−5388,257781] |
−1107111813625/1228691592 |
−19198306125000 |
[2] |
6912 |
1.2434
|
|
2550.u1 |
2550v3 |
[1,1,1,−18763,−755719] |
46753267515625/11591221248 |
181112832000000 |
[2] |
10368 |
1.4461
|
|
2550.u4 |
2550v4 |
[1,1,1,45237,−4723719] |
655215969476375/1001033261568 |
−15641144712000000 |
[2] |
20736 |
1.7927
|
|
The elliptic curves in class 2550v have
rank 1.
The elliptic curves in class 2550v do not have complex multiplication.
sage: E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
⎝⎜⎜⎛1236216336126321⎠⎟⎟⎞
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.