Properties

Label 25536cj2
Conductor 2553625536
Discriminant 6.591×10126.591\times 10^{12}
j-invariant 1367595682000402300927 \frac{1367595682000}{402300927}
CM no
Rank 22
Torsion structure Z/2Z\Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2=x3x25873x+123441y^2=x^3-x^2-5873x+123441 Copy content Toggle raw display (homogenize, simplify)
y2z=x3x2z5873xz2+123441z3y^2z=x^3-x^2z-5873xz^2+123441z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x3475740x+88561296y^2=x^3-475740x+88561296 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, -1, 0, -5873, 123441])
 
gp: E = ellinit([0, -1, 0, -5873, 123441])
 
magma: E := EllipticCurve([0, -1, 0, -5873, 123441]);
 
oscar: E = elliptic_curve([0, -1, 0, -5873, 123441])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

ZZZ/2Z\Z \oplus \Z \oplus \Z/{2}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(80,399)(80, 399)0.503924662366167579669958605490.50392466236616757966995860549\infty
(15,456)(-15, 456)0.899455856519243108773845112820.89945585651924310877384511282\infty
(23,0)(23, 0)0022

Integral points

(85,±36)(-85,\pm 36), (53,±532)(-53,\pm 532), (25,±504)(-25,\pm 504), (15,±456)(-15,\pm 456), (17,±168)(17,\pm 168), (23,0) \left(23, 0\right) , (73,±280)(73,\pm 280), (80,±399)(80,\pm 399), (137,±1368)(137,\pm 1368), (192,±2457)(192,\pm 2457), (265,±4136)(265,\pm 4136), (745,±20216)(745,\pm 20216), (1448,±55005)(1448,\pm 55005), (9257,±890568)(9257,\pm 890568) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  25536 25536  = 2637192^{6} \cdot 3 \cdot 7 \cdot 19
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  65912983879686591298387968 = 21432731942^{14} \cdot 3^{2} \cdot 7^{3} \cdot 19^{4}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  1367595682000402300927 \frac{1367595682000}{402300927}  = 2432537319488132^{4} \cdot 3^{-2} \cdot 5^{3} \cdot 7^{-3} \cdot 19^{-4} \cdot 881^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 1.16555549326161051176846633031.1655554932616105117684663303
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.356883782608340984115028855270.35688378260834098411502885527
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.92191819846637560.9219181984663756
Szpiro ratio: σm\sigma_{m} ≈ 3.70996381194687073.7099638119468707

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 2 2
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 2 2
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 0.415312314241059432002878470090.41531231424105943200287847009
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.697088361054812606460161827050.69708836105481260646016182705
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 96 96  = 222322 2^{2}\cdot2\cdot3\cdot2^{2}
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 22
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(2)(E,1)/2! L^{(2)}(E,1)/2! ≈ 6.94822513104435429112876207166.9482251310443542911287620716
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

6.948225131L(2)(E,1)/2!=?#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.6970880.41531296226.948225131\displaystyle 6.948225131 \approx L^{(2)}(E,1)/2! \overset{?}{=} \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.697088 \cdot 0.415312 \cdot 96}{2^2} \approx 6.948225131

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   25536.2.a.x

qq3+q7+q92q116q138q17+q19+O(q20) q - q^{3} + q^{7} + q^{9} - 2 q^{11} - 6 q^{13} - 8 q^{17} + q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 55296
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 4 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 44 I4I_{4}^{*} additive -1 6 14 0
33 22 I2I_{2} nonsplit multiplicative 1 1 2 2
77 33 I3I_{3} split multiplicative -1 1 3 3
1919 44 I4I_{4} split multiplicative -1 1 4 4

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2B 2.3.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[64, 25, 21, 64], [62, 1, 11, 0], [1, 4, 0, 1], [29, 4, 58, 9], [1, 0, 4, 1], [81, 4, 80, 5], [3, 4, 8, 11], [1, 2, 2, 5]]
 
GL(2,Integers(84)).subgroup(gens)
 
Gens := [[64, 25, 21, 64], [62, 1, 11, 0], [1, 4, 0, 1], [29, 4, 58, 9], [1, 0, 4, 1], [81, 4, 80, 5], [3, 4, 8, 11], [1, 2, 2, 5]];
 
sub<GL(2,Integers(84))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 84=2237 84 = 2^{2} \cdot 3 \cdot 7 , index 1212, genus 00, and generators

(64252164),(621110),(1401),(294589),(1041),(814805),(34811),(1225)\left(\begin{array}{rr} 64 & 25 \\ 21 & 64 \end{array}\right),\left(\begin{array}{rr} 62 & 1 \\ 11 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 29 & 4 \\ 58 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 81 & 4 \\ 80 & 5 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[84])K:=\Q(E[84]) is a degree-774144774144 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/84Z)\GL_2(\Z/84\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 additive 22 7 7
33 nonsplit multiplicative 44 1216=2619 1216 = 2^{6} \cdot 19
77 split multiplicative 88 3648=26319 3648 = 2^{6} \cdot 3 \cdot 19
1919 split multiplicative 2020 1344=2637 1344 = 2^{6} \cdot 3 \cdot 7

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2.
Its isogeny class 25536cj consists of 2 curves linked by isogenies of degree 2.

Twists

The minimal quadratic twist of this elliptic curve is 1596b2, its twist by 8-8.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/2Z\cong \Z/{2}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(7)\Q(\sqrt{7}) Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
44 4.0.4032.2 Z/4Z\Z/4\Z not in database
88 8.0.12745506816.11 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 8.4.69392203776.3 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 deg 8 Z/6Z\Z/6\Z not in database
1616 deg 16 Z/8Z\Z/8\Z not in database
1616 deg 16 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type add nonsplit ss split ord ord ord split ord ord ss ord ord ord ord
λ\lambda-invariant(s) - 6 2,2 3 2 2 6 3 2 2 2,2 2 2 2 2
μ\mu-invariant(s) - 0 0,0 0 0 0 0 0 0 0 0,0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

pp-adic regulators

pp-adic regulators are not yet computed for curves that are not Γ0\Gamma_0-optimal.