Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3+x^2-13x-21\)
|
(homogenize, simplify) |
\(y^2z=x^3+x^2z-13xz^2-21z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-1080x-12096\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(5, 8)$ | $0.96025159501659529387304053183$ | $\infty$ |
$(-3, 0)$ | $0$ | $2$ |
Integral points
\( \left(-3, 0\right) \), \((-2,\pm 1)\), \((5,\pm 8)\)
Invariants
Conductor: | $N$ | = | \( 256 \) | = | $2^{8}$ |
|
Discriminant: | $\Delta$ | = | $32768$ | = | $2^{15} $ |
|
j-invariant: | $j$ | = | \( 8000 \) | = | $2^{6} \cdot 5^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z[\sqrt{-2}]\) (potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $N(\mathrm{U}(1))$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $-0.40397265035989411975627760561$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-1.2704066260598257565278177574$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9029767420170889$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.495723035582761$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.96025159501659529387304053183$ |
|
Real period: | $\Omega$ | ≈ | $2.5189270468096534385807611190$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 2 $ = $ 2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L'(E,1)$ | ≈ | $1.2094018572147058551904833617 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 1.209401857 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 2.518927 \cdot 0.960252 \cdot 2}{2^2} \\ & \approx 1.209401857\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 16 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There is only one prime $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $III^{*}$ | additive | 1 | 8 | 15 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 16.192.5.624 |
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $4$ | \( 1 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 256.a
consists of 2 curves linked by isogenies of
degree 2.
Twists
The minimal quadratic twist of this elliptic curve is 256.a2, its twist by $-8$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{2}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | 2.2.8.1-1024.1-d3 |
$4$ | 4.0.2048.2 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | 4.2.18432.2 | \(\Z/6\Z\) | not in database |
$4$ | 4.0.6144.1 | \(\Z/6\Z\) | not in database |
$8$ | 8.4.67108864.1 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.339738624.10 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database |
$8$ | 8.4.1358954496.3 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$8$ | 8.0.150994944.2 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$12$ | 12.0.169075682574336.4 | \(\Z/18\Z\) | not in database |
$16$ | 16.0.18014398509481984.1 | \(\Z/4\Z \oplus \Z/8\Z\) | not in database |
$16$ | 16.4.4611686018427387904.1 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | 16.0.1846757322198614016.7 | \(\Z/6\Z \oplus \Z/6\Z\) | not in database |
$16$ | 16.0.29548117155177824256.5 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
$16$ | 16.0.364791569817010176.1 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
$20$ | 20.0.84954018740373771557797888.2 | \(\Z/22\Z\) | not in database |
We only show fields where the torsion growth is primitive.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | ord | ss | ss | ord | ss | ord | ord | ss | ss | ss | ss | ord | ord | ss |
$\lambda$-invariant(s) | - | 3 | 1,1 | 3,1 | 1 | 1,1 | 1 | 1 | 1,1 | 1,1 | 1,1 | 1,1 | 1 | 1 | 3,1 |
$\mu$-invariant(s) | - | 0 | 0,0 | 0,0 | 0 | 0,0 | 0 | 0 | 0,0 | 0,0 | 0,0 | 0,0 | 0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.