Properties

Label 25751a
Number of curves $1$
Conductor $25751$
CM no
Rank $3$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("a1")
 
E.isogeny_class()
 

Elliptic curves in class 25751a

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
25751.a1 25751a1 \([1, 0, 0, -39, 94]\) \(-6570725617/283261\) \(-283261\) \([]\) \(3456\) \(-0.18802\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 25751a1 has rank \(3\).

Complex multiplication

The elliptic curves in class 25751a do not have complex multiplication.

Modular form 25751.2.a.a

sage: E.q_eigenform(10)
 
\(q - q^{2} - 2 q^{3} - q^{4} - 2 q^{5} + 2 q^{6} - 3 q^{7} + 3 q^{8} + q^{9} + 2 q^{10} - q^{11} + 2 q^{12} - 5 q^{13} + 3 q^{14} + 4 q^{15} - q^{16} - 6 q^{17} - q^{18} - 8 q^{19} + O(q^{20})\) Copy content Toggle raw display