Properties

Label 25806b
Number of curves 11
Conductor 2580625806
CM no
Rank 00

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("b1")
 
E.isogeny_class()
 

Elliptic curves in class 25806b

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
25806.e1 25806b1 [1,0,1,17860,963646][1, 0, 1, -17860, -963646] 629989223007953593/35345595428352-629989223007953593/35345595428352 35345595428352-35345595428352 [][] 103680103680 1.35701.3570 Γ0(N)\Gamma_0(N)-optimal

Rank

sage: E.rank()
 

The elliptic curve 25806b1 has rank 00.

Complex multiplication

The elliptic curves in class 25806b do not have complex multiplication.

Modular form 25806.2.a.b

sage: E.q_eigenform(10)
 
qq2+q3+q4+2q5q63q7q8+q92q10q11+q123q13+3q14+2q15+q16q17q18+O(q20)q - q^{2} + q^{3} + q^{4} + 2 q^{5} - q^{6} - 3 q^{7} - q^{8} + q^{9} - 2 q^{10} - q^{11} + q^{12} - 3 q^{13} + 3 q^{14} + 2 q^{15} + q^{16} - q^{17} - q^{18} + O(q^{20}) Copy content Toggle raw display