Properties

Label 25806b1
Conductor 2580625806
Discriminant 3.535×1013-3.535\times 10^{13}
j-invariant 62998922300795359335345595428352 -\frac{629989223007953593}{35345595428352}
CM no
Rank 00
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy+y=x317860x963646y^2+xy+y=x^3-17860x-963646 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz+yz2=x317860xz2963646z3y^2z+xyz+yz^2=x^3-17860xz^2-963646z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x323145939x44890418322y^2=x^3-23145939x-44890418322 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, 0, 1, -17860, -963646])
 
gp: E = ellinit([1, 0, 1, -17860, -963646])
 
magma: E := EllipticCurve([1, 0, 1, -17860, -963646]);
 
oscar: E = elliptic_curve([1, 0, 1, -17860, -963646])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

trivial

magma: MordellWeilGroup(E);
 

Invariants

Conductor: NN  =  25806 25806  = 231117232 \cdot 3 \cdot 11 \cdot 17 \cdot 23
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  35345595428352-35345595428352 = 1293311317423-1 \cdot 2^{9} \cdot 3^{3} \cdot 11^{3} \cdot 17^{4} \cdot 23
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  62998922300795359335345595428352 -\frac{629989223007953593}{35345595428352}  = 12933113174231773311093-1 \cdot 2^{-9} \cdot 3^{-3} \cdot 11^{-3} \cdot 17^{-4} \cdot 23^{-1} \cdot 773^{3} \cdot 1109^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 1.35703869763322609688895538031.3570386976332260968889553803
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 1.35703869763322609688895538031.3570386976332260968889553803
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.92602636650589110.9260263665058911
Szpiro ratio: σm\sigma_{m} ≈ 4.0436648253604514.043664825360451

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 0 0
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 0 0
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) = 11
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.205820891097056596839011072310.20582089109705659683901107231
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 6 6  = 13121 1\cdot3\cdot1\cdot2\cdot1
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 11
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L(E,1) ≈ 1.23492534658233958103406643391.2349253465823395810340664339
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  =  11    (exact)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

1.234925347L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.2058211.0000006121.234925347\displaystyle 1.234925347 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.205821 \cdot 1.000000 \cdot 6}{1^2} \approx 1.234925347

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form   25806.2.a.e

qq2+q3+q4+2q5q63q7q8+q92q10q11+q123q13+3q14+2q15+q16q17q18+O(q20) q - q^{2} + q^{3} + q^{4} + 2 q^{5} - q^{6} - 3 q^{7} - q^{8} + q^{9} - 2 q^{10} - q^{11} + q^{12} - 3 q^{13} + 3 q^{14} + 2 q^{15} + q^{16} - q^{17} - q^{18} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 103680
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: yes
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is semistable. There are 5 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 11 I9I_{9} nonsplit multiplicative 1 1 9 9
33 33 I3I_{3} split multiplicative -1 1 3 3
1111 11 I3I_{3} nonsplit multiplicative 1 1 3 3
1717 22 I4I_{4} nonsplit multiplicative 1 1 4 4
2323 11 I1I_{1} nonsplit multiplicative 1 1 1 1

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell.

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[1519, 2, 0, 1], [4049, 2, 4049, 3], [1, 0, 2, 1], [1, 2, 0, 1], [3961, 2, 3961, 3], [6071, 2, 6070, 3], [3313, 2, 3313, 3], [3037, 2, 3037, 3], [1, 1, 6071, 0]]
 
GL(2,Integers(6072)).subgroup(gens)
 
Gens := [[1519, 2, 0, 1], [4049, 2, 4049, 3], [1, 0, 2, 1], [1, 2, 0, 1], [3961, 2, 3961, 3], [6071, 2, 6070, 3], [3313, 2, 3313, 3], [3037, 2, 3037, 3], [1, 1, 6071, 0]];
 
sub<GL(2,Integers(6072))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 6072=2331123 6072 = 2^{3} \cdot 3 \cdot 11 \cdot 23 , index 22, genus 00, and generators

(1519201),(4049240493),(1021),(1201),(3961239613),(6071260703),(3313233133),(3037230373),(1160710)\left(\begin{array}{rr} 1519 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 4049 & 2 \\ 4049 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 3961 & 2 \\ 3961 & 3 \end{array}\right),\left(\begin{array}{rr} 6071 & 2 \\ 6070 & 3 \end{array}\right),\left(\begin{array}{rr} 3313 & 2 \\ 3313 & 3 \end{array}\right),\left(\begin{array}{rr} 3037 & 2 \\ 3037 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 6071 & 0 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[6072])K:=\Q(E[6072]) is a degree-130005231206400130005231206400 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/6072Z)\GL_2(\Z/6072\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 nonsplit multiplicative 44 759=31123 759 = 3 \cdot 11 \cdot 23
33 split multiplicative 44 391=1723 391 = 17 \cdot 23
1111 nonsplit multiplicative 1212 2346=231723 2346 = 2 \cdot 3 \cdot 17 \cdot 23
1717 nonsplit multiplicative 1818 1518=231123 1518 = 2 \cdot 3 \cdot 11 \cdot 23
2323 nonsplit multiplicative 2424 1122=231117 1122 = 2 \cdot 3 \cdot 11 \cdot 17

Isogenies

gp: ellisomat(E)
 

This curve has no rational isogenies. Its isogeny class 25806b consists of this curve only.

Twists

This elliptic curve is its own minimal quadratic twist.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} (which is trivial) are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
33 3.1.6072.1 Z/2Z\Z/2\Z not in database
66 6.0.223869685248.1 Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
88 8.2.51115876552107.4 Z/3Z\Z/3\Z not in database
1212 deg 12 Z/4Z\Z/4\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

pp 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type nonsplit split ord ord nonsplit ord nonsplit ss nonsplit ord ord ord ord ord ord
λ\lambda-invariant(s) 8 1 0 0 0 0 0 0,0 0 0 0 0 0 0 0
μ\mu-invariant(s) 0 0 0 0 0 0 0 0,0 0 0 0 0 0 0 0

pp-adic regulators

All pp-adic regulators are identically 11 since the rank is 00.