Properties

Label 259920b
Number of curves 22
Conductor 259920259920
CM no
Rank 11
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("b1")
 
E.isogeny_class()
 

Elliptic curves in class 259920b

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
259920.b2 259920b1 [0,0,0,15162,294937][0, 0, 0, 15162, -294937] 702464/475702464/475 260652999092400-260652999092400 [2][2] 11059201105920 1.45491.4549 Γ0(N)\Gamma_0(N)-optimal
259920.b1 259920b2 [0,0,0,66063,2455522][0, 0, 0, -66063, -2455522] 3631696/18053631696/1805 1584770234481792015847702344817920 [2][2] 22118402211840 1.80141.8014  

Rank

sage: E.rank()
 

The elliptic curves in class 259920b have rank 11.

Complex multiplication

The elliptic curves in class 259920b do not have complex multiplication.

Modular form 259920.2.a.b

sage: E.q_eigenform(10)
 
qq54q74q116q17+O(q20)q - q^{5} - 4 q^{7} - 4 q^{11} - 6 q^{17} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1221)\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.