sage:E = EllipticCurve("b1")
E.isogeny_class()
Elliptic curves in class 259920b
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
259920.b2 |
259920b1 |
[0,0,0,15162,−294937] |
702464/475 |
−260652999092400 |
[2] |
1105920 |
1.4549
|
Γ0(N)-optimal |
259920.b1 |
259920b2 |
[0,0,0,−66063,−2455522] |
3631696/1805 |
15847702344817920 |
[2] |
2211840 |
1.8014
|
|
sage:E.rank()
The elliptic curves in class 259920b have
rank 1.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1 |
3 | 1 |
5 | 1+T |
19 | 1 |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
7 |
1+4T+7T2 |
1.7.e
|
11 |
1+4T+11T2 |
1.11.e
|
13 |
1+13T2 |
1.13.a
|
17 |
1+6T+17T2 |
1.17.g
|
23 |
1−8T+23T2 |
1.23.ai
|
29 |
1+6T+29T2 |
1.29.g
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 259920b do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
(1221)
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.