Properties

Label 259920b
Number of curves $2$
Conductor $259920$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("b1")
 
E.isogeny_class()
 

Elliptic curves in class 259920b

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
259920.b2 259920b1 \([0, 0, 0, 15162, -294937]\) \(702464/475\) \(-260652999092400\) \([2]\) \(1105920\) \(1.4549\) \(\Gamma_0(N)\)-optimal
259920.b1 259920b2 \([0, 0, 0, -66063, -2455522]\) \(3631696/1805\) \(15847702344817920\) \([2]\) \(2211840\) \(1.8014\)  

Rank

sage: E.rank()
 

The elliptic curves in class 259920b have rank \(1\).

Complex multiplication

The elliptic curves in class 259920b do not have complex multiplication.

Modular form 259920.2.a.b

sage: E.q_eigenform(10)
 
\(q - q^{5} - 4 q^{7} - 4 q^{11} - 6 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.