Properties

Label 26299e
Number of curves 11
Conductor 2629926299
CM no
Rank 00

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("e1")
 
E.isogeny_class()
 

Elliptic curves in class 26299e

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
26299.i1 26299e1 [0,0,1,83521,58569101][0, 0, 1, 83521, 58569101] 31961088/75357131961088/753571 1519194539555253379-1519194539555253379 [][] 358020358020 2.16892.1689 Γ0(N)\Gamma_0(N)-optimal

Rank

sage: E.rank()
 

The elliptic curve 26299e1 has rank 00.

Complex multiplication

The elliptic curves in class 26299e do not have complex multiplication.

Modular form 26299.2.a.e

sage: E.q_eigenform(10)
 
q+2q2+2q4+2q5+q73q9+4q10q13+2q144q166q18q19+O(q20)q + 2 q^{2} + 2 q^{4} + 2 q^{5} + q^{7} - 3 q^{9} + 4 q^{10} - q^{13} + 2 q^{14} - 4 q^{16} - 6 q^{18} - q^{19} + O(q^{20}) Copy content Toggle raw display