Show commands:
SageMath
E = EllipticCurve("b1")
E.isogeny_class()
Elliptic curves in class 2646.b
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
2646.b1 | 2646k2 | \([1, -1, 0, -45726, -3754612]\) | \(-10353819/8\) | \(-8169737621976\) | \([]\) | \(11340\) | \(1.4093\) | |
2646.b2 | 2646k1 | \([1, -1, 0, 579, -22429]\) | \(189/2\) | \(-226937156166\) | \([3]\) | \(3780\) | \(0.86004\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 2646.b have rank \(0\).
Complex multiplication
The elliptic curves in class 2646.b do not have complex multiplication.Modular form 2646.2.a.b
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.