Properties

Label 2646.b
Number of curves $2$
Conductor $2646$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("b1")
 
E.isogeny_class()
 

Elliptic curves in class 2646.b

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
2646.b1 2646k2 \([1, -1, 0, -45726, -3754612]\) \(-10353819/8\) \(-8169737621976\) \([]\) \(11340\) \(1.4093\)  
2646.b2 2646k1 \([1, -1, 0, 579, -22429]\) \(189/2\) \(-226937156166\) \([3]\) \(3780\) \(0.86004\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 2646.b have rank \(0\).

Complex multiplication

The elliptic curves in class 2646.b do not have complex multiplication.

Modular form 2646.2.a.b

sage: E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - 3 q^{5} - q^{8} + 3 q^{10} - 4 q^{13} + q^{16} - 6 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.