Show commands:
SageMath
E = EllipticCurve("i1")
E.isogeny_class()
Elliptic curves in class 266910i
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
266910.i2 | 266910i1 | \([1, 1, 0, -2452, 141916]\) | \(-1631405145996361/7882185937500\) | \(-7882185937500\) | \([2]\) | \(761856\) | \(1.1592\) | \(\Gamma_0(N)\)-optimal |
266910.i1 | 266910i2 | \([1, 1, 0, -58702, 5440666]\) | \(22371441369258096361/43635080711250\) | \(43635080711250\) | \([2]\) | \(1523712\) | \(1.5057\) |
Rank
sage: E.rank()
The elliptic curves in class 266910i have rank \(2\).
Complex multiplication
The elliptic curves in class 266910i do not have complex multiplication.Modular form 266910.2.a.i
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.