sage:E = EllipticCurve("i1")
E.isogeny_class()
Elliptic curves in class 266910i
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
266910.i2 |
266910i1 |
[1,1,0,−2452,141916] |
−1631405145996361/7882185937500 |
−7882185937500 |
[2] |
761856 |
1.1592
|
Γ0(N)-optimal |
266910.i1 |
266910i2 |
[1,1,0,−58702,5440666] |
22371441369258096361/43635080711250 |
43635080711250 |
[2] |
1523712 |
1.5057
|
|
sage:E.rank()
The elliptic curves in class 266910i have
rank 2.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1+T |
3 | 1+T |
5 | 1−T |
7 | 1+T |
31 | 1−T |
41 | 1−T |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
11 |
1+4T+11T2 |
1.11.e
|
13 |
1−2T+13T2 |
1.13.ac
|
17 |
1−2T+17T2 |
1.17.ac
|
19 |
1+6T+19T2 |
1.19.g
|
23 |
1+4T+23T2 |
1.23.e
|
29 |
1−10T+29T2 |
1.29.ak
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 266910i do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
(1221)
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.