Properties

Label 266910i
Number of curves 22
Conductor 266910266910
CM no
Rank 22
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("i1")
 
E.isogeny_class()
 

Elliptic curves in class 266910i

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
266910.i2 266910i1 [1,1,0,2452,141916][1, 1, 0, -2452, 141916] 1631405145996361/7882185937500-1631405145996361/7882185937500 7882185937500-7882185937500 [2][2] 761856761856 1.15921.1592 Γ0(N)\Gamma_0(N)-optimal
266910.i1 266910i2 [1,1,0,58702,5440666][1, 1, 0, -58702, 5440666] 22371441369258096361/4363508071125022371441369258096361/43635080711250 4363508071125043635080711250 [2][2] 15237121523712 1.50571.5057  

Rank

sage: E.rank()
 

The elliptic curves in class 266910i have rank 22.

Complex multiplication

The elliptic curves in class 266910i do not have complex multiplication.

Modular form 266910.2.a.i

sage: E.q_eigenform(10)
 
qq2q3+q4+q5+q6q7q8+q9q104q11q12+2q13+q14q15+q16+2q17q186q19+O(q20)q - q^{2} - q^{3} + q^{4} + q^{5} + q^{6} - q^{7} - q^{8} + q^{9} - q^{10} - 4 q^{11} - q^{12} + 2 q^{13} + q^{14} - q^{15} + q^{16} + 2 q^{17} - q^{18} - 6 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1221)\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.