y 2 + x y + y = x 3 − 809 x + 20396 y^2+xy+y=x^3-809x+20396 y 2 + x y + y = x 3 − 8 0 9 x + 2 0 3 9 6
(homogenize , simplify )
y 2 z + x y z + y z 2 = x 3 − 809 x z 2 + 20396 z 3 y^2z+xyz+yz^2=x^3-809xz^2+20396z^3 y 2 z + x y z + y z 2 = x 3 − 8 0 9 x z 2 + 2 0 3 9 6 z 3
(dehomogenize , simplify )
y 2 = x 3 − 1047843 x + 954750942 y^2=x^3-1047843x+954750942 y 2 = x 3 − 1 0 4 7 8 4 3 x + 9 5 4 7 5 0 9 4 2
(homogenize , minimize )
sage: E = EllipticCurve([1, 0, 1, -809, 20396])
gp: E = ellinit([1, 0, 1, -809, 20396])
magma: E := EllipticCurve([1, 0, 1, -809, 20396]);
oscar: E = elliptic_curve([1, 0, 1, -809, 20396])
sage: E.short_weierstrass_model()
magma: WeierstrassModel(E);
oscar: short_weierstrass_model(E)
Z ⊕ Z / 2 Z \Z \oplus \Z/{2}\Z Z ⊕ Z / 2 Z
magma: MordellWeilGroup(E);
P P P h ^ ( P ) \hat{h}(P) h ^ ( P ) Order
( − 21 , 178 ) (-21, 178) ( − 2 1 , 1 7 8 ) 1.0183119774943363546184695190 1.0183119774943363546184695190 1 . 0 1 8 3 1 1 9 7 7 4 9 4 3 3 6 3 5 4 6 1 8 4 6 9 5 1 9 0 ∞ \infty ∞
( − 37 , 18 ) (-37, 18) ( − 3 7 , 1 8 ) 0 0 0 2 2 2
( − 37 , 18 ) \left(-37, 18\right) ( − 3 7 , 1 8 ) , ( − 21 , 178 ) \left(-21, 178\right) ( − 2 1 , 1 7 8 ) , ( − 21 , − 158 ) \left(-21, -158\right) ( − 2 1 , − 1 5 8 ) , ( 44 , 243 ) \left(44, 243\right) ( 4 4 , 2 4 3 ) , ( 44 , − 288 ) \left(44, -288\right) ( 4 4 , − 2 8 8 ) , ( 168 , 2068 ) \left(168, 2068\right) ( 1 6 8 , 2 0 6 8 ) , ( 168 , − 2237 ) \left(168, -2237\right) ( 1 6 8 , − 2 2 3 7 )
sage: E.integral_points()
magma: IntegralPoints(E);
Invariants
Conductor :
N N N
=
266910 266910 2 6 6 9 1 0 = 2 ⋅ 3 ⋅ 5 ⋅ 7 ⋅ 31 ⋅ 41 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41 2 ⋅ 3 ⋅ 5 ⋅ 7 ⋅ 3 1 ⋅ 4 1
sage: E.conductor().factor()
Discriminant :
Δ \Delta Δ
=
− 147078086400 -147078086400 − 1 4 7 0 7 8 0 8 6 4 0 0 = − 1 ⋅ 2 8 ⋅ 3 2 ⋅ 5 2 ⋅ 7 2 ⋅ 31 ⋅ 4 1 2 -1 \cdot 2^{8} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 31 \cdot 41^{2} − 1 ⋅ 2 8 ⋅ 3 2 ⋅ 5 2 ⋅ 7 2 ⋅ 3 1 ⋅ 4 1 2
sage: E.discriminant().factor()
j-invariant :
j j j
=
− 58451728309129 147078086400 -\frac{58451728309129}{147078086400} − 1 4 7 0 7 8 0 8 6 4 0 0 5 8 4 5 1 7 2 8 3 0 9 1 2 9 = − 1 ⋅ 2 − 8 ⋅ 3 − 2 ⋅ 5 − 2 ⋅ 7 − 2 ⋅ 3 1 − 1 ⋅ 4 1 − 2 ⋅ 19 7 6 -1 \cdot 2^{-8} \cdot 3^{-2} \cdot 5^{-2} \cdot 7^{-2} \cdot 31^{-1} \cdot 41^{-2} \cdot 197^{6} − 1 ⋅ 2 − 8 ⋅ 3 − 2 ⋅ 5 − 2 ⋅ 7 − 2 ⋅ 3 1 − 1 ⋅ 4 1 − 2 ⋅ 1 9 7 6
sage: E.j_invariant().factor()
Endomorphism ring :
E n d ( E ) \mathrm{End}(E) E n d ( E ) = Z \Z Z
Geometric endomorphism ring :
E n d ( E Q ‾ ) \mathrm{End}(E_{\overline{\Q}}) E n d ( E Q )
=
Z \Z Z
(no potential complex multiplication )
magma: HasComplexMultiplication(E);
Sato-Tate group :
S T ( E ) \mathrm{ST}(E) S T ( E ) = S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
Faltings height :
h F a l t i n g s h_{\mathrm{Faltings}} h F a l t i n g s ≈ 0.83069897585187538825053907502 0.83069897585187538825053907502 0 . 8 3 0 6 9 8 9 7 5 8 5 1 8 7 5 3 8 8 2 5 0 5 3 9 0 7 5 0 2
magma: FaltingsHeight(E);
oscar: faltings_height(E)
Stable Faltings height :
h s t a b l e h_{\mathrm{stable}} h s t a b l e ≈ 0.83069897585187538825053907502 0.83069897585187538825053907502 0 . 8 3 0 6 9 8 9 7 5 8 5 1 8 7 5 3 8 8 2 5 0 5 3 9 0 7 5 0 2
magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
a b c abc a b c quality :
Q Q Q ≈ 0.9683775800156581 0.9683775800156581 0 . 9 6 8 3 7 7 5 8 0 0 1 5 6 5 8 1
Szpiro ratio :
σ m \sigma_{m} σ m ≈ 2.671216013796215 2.671216013796215 2 . 6 7 1 2 1 6 0 1 3 7 9 6 2 1 5
Analytic rank :
r a n r_{\mathrm{an}} r a n = 1 1 1
Mordell-Weil rank :
r r r = 1 1 1
gp: [lower,upper] = ellrank(E)
Regulator :
R e g ( E / Q ) \mathrm{Reg}(E/\Q) R e g ( E / Q ) ≈ 1.0183119774943363546184695190 1.0183119774943363546184695190 1 . 0 1 8 3 1 1 9 7 7 4 9 4 3 3 6 3 5 4 6 1 8 4 6 9 5 1 9 0
G = E.gen \\ if available
matdet(ellheightmatrix(E,G))
Real period :
Ω \Omega Ω ≈ 0.91096564871774981719719208707 0.91096564871774981719719208707 0 . 9 1 0 9 6 5 6 4 8 7 1 7 7 4 9 8 1 7 1 9 7 1 9 2 0 8 7 0 7
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
Tamagawa product :
∏ p c p \prod_{p}c_p ∏ p c p = 32 32 3 2
= 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 1 ⋅ 2 2\cdot2\cdot2\cdot2\cdot1\cdot2 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 1 ⋅ 2
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
Torsion order :
# E ( Q ) t o r \#E(\Q)_{\mathrm{tor}} # E ( Q ) t o r = 2 2 2
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
Special value :
L ′ ( E , 1 ) L'(E,1) L ′ ( E , 1 ) ≈ 7.4211778494014621544899438347 7.4211778494014621544899438347 7 . 4 2 1 1 7 7 8 4 9 4 0 1 4 6 2 1 5 4 4 8 9 9 4 3 8 3 4 7
r = E.rank();
E.lseries().dokchitser().derivative(1,r)/r.factorial()
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
Analytic order of Ш :
Шa n {}_{\mathrm{an}} a n
≈
1 1 1
(rounded )
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
7.421177849 ≈ L ′ ( E , 1 ) = # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p # E ( Q ) t o r 2 ≈ 1 ⋅ 0.910966 ⋅ 1.018312 ⋅ 32 2 2 ≈ 7.421177849 \displaystyle 7.421177849 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.910966 \cdot 1.018312 \cdot 32}{2^2} \approx 7.421177849 7 . 4 2 1 1 7 7 8 4 9 ≈ L ′ ( E , 1 ) = # E ( Q ) t o r 2 # Ш ( E / Q ) ⋅ Ω E ⋅ R e g ( E / Q ) ⋅ ∏ p c p ≈ 2 2 1 ⋅ 0 . 9 1 0 9 6 6 ⋅ 1 . 0 1 8 3 1 2 ⋅ 3 2 ≈ 7 . 4 2 1 1 7 7 8 4 9
# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
Modular form
266910.2.a.t
q − q 2 + q 3 + q 4 − q 5 − q 6 + q 7 − q 8 + q 9 + q 10 − 2 q 11 + q 12 + 2 q 13 − q 14 − q 15 + q 16 + 2 q 17 − q 18 + 4 q 19 + O ( q 20 ) q - q^{2} + q^{3} + q^{4} - q^{5} - q^{6} + q^{7} - q^{8} + q^{9} + q^{10} - 2 q^{11} + q^{12} + 2 q^{13} - q^{14} - q^{15} + q^{16} + 2 q^{17} - q^{18} + 4 q^{19} + O(q^{20}) q − q 2 + q 3 + q 4 − q 5 − q 6 + q 7 − q 8 + q 9 + q 1 0 − 2 q 1 1 + q 1 2 + 2 q 1 3 − q 1 4 − q 1 5 + q 1 6 + 2 q 1 7 − q 1 8 + 4 q 1 9 + O ( q 2 0 )
\\ actual modular form, use for small N
[mf,F] = mffromell(E)
Ser(mfcoefs(mf,20),q)
\\ or just the series
Ser(ellan(E,20),q)*q
For more coefficients, see the Downloads section to the right.
This elliptic curve is semistable .
There
are 6 primes p p p
of bad reduction :
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
The ℓ \ell ℓ -adic Galois representation has maximal image
for all primes ℓ \ell ℓ except those listed in the table below.
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
gens = [[621, 4, 1242, 9], [25417, 4, 25416, 5], [1, 2, 2, 5], [1, 4, 0, 1], [14762, 1, 18039, 0], [20337, 4, 15254, 9], [1, 0, 4, 1], [6357, 19066, 19064, 6355], [3, 4, 8, 11]]
GL(2,Integers(25420)).subgroup(gens)
Gens := [[621, 4, 1242, 9], [25417, 4, 25416, 5], [1, 2, 2, 5], [1, 4, 0, 1], [14762, 1, 18039, 0], [20337, 4, 15254, 9], [1, 0, 4, 1], [6357, 19066, 19064, 6355], [3, 4, 8, 11]];
sub<GL(2,Integers(25420))|Gens>;
The image H : = ρ E ( Gal ( Q ‾ / Q ) ) H:=\rho_E(\Gal(\overline{\Q}/\Q)) H : = ρ E ( G a l ( Q / Q ) ) of the adelic Galois representation has
level 25420 = 2 2 ⋅ 5 ⋅ 31 ⋅ 41 25420 = 2^{2} \cdot 5 \cdot 31 \cdot 41 2 5 4 2 0 = 2 2 ⋅ 5 ⋅ 3 1 ⋅ 4 1 , index 12 12 1 2 , genus 0 0 0 , and generators
( 621 4 1242 9 ) , ( 25417 4 25416 5 ) , ( 1 2 2 5 ) , ( 1 4 0 1 ) , ( 14762 1 18039 0 ) , ( 20337 4 15254 9 ) , ( 1 0 4 1 ) , ( 6357 19066 19064 6355 ) , ( 3 4 8 11 ) \left(\begin{array}{rr}
621 & 4 \\
1242 & 9
\end{array}\right),\left(\begin{array}{rr}
25417 & 4 \\
25416 & 5
\end{array}\right),\left(\begin{array}{rr}
1 & 2 \\
2 & 5
\end{array}\right),\left(\begin{array}{rr}
1 & 4 \\
0 & 1
\end{array}\right),\left(\begin{array}{rr}
14762 & 1 \\
18039 & 0
\end{array}\right),\left(\begin{array}{rr}
20337 & 4 \\
15254 & 9
\end{array}\right),\left(\begin{array}{rr}
1 & 0 \\
4 & 1
\end{array}\right),\left(\begin{array}{rr}
6357 & 19066 \\
19064 & 6355
\end{array}\right),\left(\begin{array}{rr}
3 & 4 \\
8 & 11
\end{array}\right) ( 6 2 1 1 2 4 2 4 9 ) , ( 2 5 4 1 7 2 5 4 1 6 4 5 ) , ( 1 2 2 5 ) , ( 1 0 4 1 ) , ( 1 4 7 6 2 1 8 0 3 9 1 0 ) , ( 2 0 3 3 7 1 5 2 5 4 4 9 ) , ( 1 4 0 1 ) , ( 6 3 5 7 1 9 0 6 4 1 9 0 6 6 6 3 5 5 ) , ( 3 8 4 1 1 ) .
The torsion field K : = Q ( E [ 25420 ] ) K:=\Q(E[25420]) K : = Q ( E [ 2 5 4 2 0 ] ) is a degree-9445795430400000 9445795430400000 9 4 4 5 7 9 5 4 3 0 4 0 0 0 0 0 Galois extension of Q \Q Q with Gal ( K / Q ) \Gal(K/\Q) G a l ( K / Q ) isomorphic to the projection of H H H to GL 2 ( Z / 25420 Z ) \GL_2(\Z/25420\Z) GL 2 ( Z / 2 5 4 2 0 Z ) .
The table below list all primes ℓ \ell ℓ for which the Serre invariants associated to the mod-ℓ \ell ℓ Galois representation are exceptional.
ℓ \ell ℓ
Reduction type
Serre weight
Serre conductor
2 2 2
nonsplit multiplicative
4 4 4
31 31 3 1
3 3 3
split multiplicative
4 4 4
88970 = 2 ⋅ 5 ⋅ 7 ⋅ 31 ⋅ 41 88970 = 2 \cdot 5 \cdot 7 \cdot 31 \cdot 41 8 8 9 7 0 = 2 ⋅ 5 ⋅ 7 ⋅ 3 1 ⋅ 4 1
5 5 5
nonsplit multiplicative
6 6 6
53382 = 2 ⋅ 3 ⋅ 7 ⋅ 31 ⋅ 41 53382 = 2 \cdot 3 \cdot 7 \cdot 31 \cdot 41 5 3 3 8 2 = 2 ⋅ 3 ⋅ 7 ⋅ 3 1 ⋅ 4 1
7 7 7
split multiplicative
8 8 8
38130 = 2 ⋅ 3 ⋅ 5 ⋅ 31 ⋅ 41 38130 = 2 \cdot 3 \cdot 5 \cdot 31 \cdot 41 3 8 1 3 0 = 2 ⋅ 3 ⋅ 5 ⋅ 3 1 ⋅ 4 1
31 31 3 1
split multiplicative
32 32 3 2
8610 = 2 ⋅ 3 ⋅ 5 ⋅ 7 ⋅ 41 8610 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 41 8 6 1 0 = 2 ⋅ 3 ⋅ 5 ⋅ 7 ⋅ 4 1
41 41 4 1
split multiplicative
42 42 4 2
6510 = 2 ⋅ 3 ⋅ 5 ⋅ 7 ⋅ 31 6510 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31 6 5 1 0 = 2 ⋅ 3 ⋅ 5 ⋅ 7 ⋅ 3 1
This curve has non-trivial cyclic isogenies of degree d d d for d = d= d =
2.
Its isogeny class 266910t
consists of 2 curves linked by isogenies of
degree 2.
This elliptic curve is its own minimal quadratic twist .
The number fields K K K of degree less than 24 such that
E ( K ) t o r s E(K)_{\rm tors} E ( K ) t o r s is strictly larger than E ( Q ) t o r s E(\Q)_{\rm tors} E ( Q ) t o r s
≅ Z / 2 Z \cong \Z/{2}\Z ≅ Z / 2 Z
are as follows:
[ K : Q ] [K:\Q] [ K : Q ]
K K K
E ( K ) t o r s E(K)_{\rm tors} E ( K ) t o r s
Base change curve
2 2 2
Q ( − 31 ) \Q(\sqrt{-31}) Q ( − 3 1 )
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z \oplus \Z/2\Z Z / 2 Z ⊕ Z / 2 Z
not in database
4 4 4
4.2.1302775.2
Z / 4 Z \Z/4\Z Z / 4 Z
not in database
8 8 8
deg 8
Z / 2 Z ⊕ Z / 4 Z \Z/2\Z \oplus \Z/4\Z Z / 2 Z ⊕ Z / 4 Z
not in database
8 8 8
8.0.1631031015300625.7
Z / 2 Z ⊕ Z / 4 Z \Z/2\Z \oplus \Z/4\Z Z / 2 Z ⊕ Z / 4 Z
not in database
8 8 8
deg 8
Z / 6 Z \Z/6\Z Z / 6 Z
not in database
16 16 1 6
deg 16
Z / 8 Z \Z/8\Z Z / 8 Z
not in database
16 16 1 6
deg 16
Z / 2 Z ⊕ Z / 6 Z \Z/2\Z \oplus \Z/6\Z Z / 2 Z ⊕ Z / 6 Z
not in database
We only show fields where the torsion growth is primitive .
For fields not in the database, click on the degree shown to reveal the defining polynomial.
No Iwasawa invariant data is available for this curve.
p p p -adic regulators
p p p -adic regulators are not yet computed for curves that are not Γ 0 \Gamma_0 Γ 0 -optimal.