Properties

Label 266910t2
Conductor 266910266910
Discriminant 613019670480613019670480
j-invariant 563578397652718729613019670480 \frac{563578397652718729}{613019670480}
CM no
Rank 11
Torsion structure Z/2Z\Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy+y=x317209x+866636y^2+xy+y=x^3-17209x+866636 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz+yz2=x317209xz2+866636z3y^2z+xyz+yz^2=x^3-17209xz^2+866636z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x322302243x+40500687582y^2=x^3-22302243x+40500687582 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, 0, 1, -17209, 866636])
 
gp: E = ellinit([1, 0, 1, -17209, 866636])
 
magma: E := EllipticCurve([1, 0, 1, -17209, 866636]);
 
oscar: E = elliptic_curve([1, 0, 1, -17209, 866636])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

ZZ/2Z\Z \oplus \Z/{2}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(79,2)(79, 2)0.509155988747168177309234759500.50915598874716817730923475950\infty
(295/4,299/8)(295/4, -299/8)0022

Integral points

(89,1346) \left(-89, 1346\right) , (89,1258) \left(-89, -1258\right) , (66,106) \left(66, 106\right) , (66,173) \left(66, -173\right) , (79,2) \left(79, 2\right) , (79,82) \left(79, -82\right) , (184,1892) \left(184, 1892\right) , (184,2077) \left(184, -2077\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  266910 266910  = 235731412 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  613019670480613019670480 = 2434574312412^{4} \cdot 3^{4} \cdot 5 \cdot 7^{4} \cdot 31^{2} \cdot 41
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  563578397652718729613019670480 \frac{563578397652718729}{613019670480}  = 24345174312411893928132^{-4} \cdot 3^{-4} \cdot 5^{-1} \cdot 7^{-4} \cdot 31^{-2} \cdot 41^{-1} \cdot 89^{3} \cdot 9281^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 1.17727256613184804295915513581.1772725661318480429591551358
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 1.17727256613184804295915513581.1772725661318480429591551358
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.87795959647874760.8779595964787476
Szpiro ratio: σm\sigma_{m} ≈ 3.2712423222638153.271242322263815

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 1 1
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 1 1
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) ≈ 0.509155988747168177309234759500.50915598874716817730923475950
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.910965648717749817197192087070.91096564871774981719719208707
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 64 64  = 22212221 2\cdot2^{2}\cdot1\cdot2^{2}\cdot2\cdot1
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 22
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L'(E,1) ≈ 7.42117784940146215448994383477.4211778494014621544899438347
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  ≈  11    (rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

7.421177849L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.9109660.50915664227.421177849\displaystyle 7.421177849 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.910966 \cdot 0.509156 \cdot 64}{2^2} \approx 7.421177849

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 266910.2.a.t

qq2+q3+q4q5q6+q7q8+q9+q102q11+q12+2q13q14q15+q16+2q17q18+4q19+O(q20) q - q^{2} + q^{3} + q^{4} - q^{5} - q^{6} + q^{7} - q^{8} + q^{9} + q^{10} - 2 q^{11} + q^{12} + 2 q^{13} - q^{14} - q^{15} + q^{16} + 2 q^{17} - q^{18} + 4 q^{19} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 622592
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is semistable. There are 6 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 22 I4I_{4} nonsplit multiplicative 1 1 4 4
33 44 I4I_{4} split multiplicative -1 1 4 4
55 11 I1I_{1} nonsplit multiplicative 1 1 1 1
77 44 I4I_{4} split multiplicative -1 1 4 4
3131 22 I2I_{2} split multiplicative -1 1 2 2
4141 11 I1I_{1} split multiplicative -1 1 1 1

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2B 2.3.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[1, 0, 4, 1], [3, 4, 8, 11], [15254, 1, 5083, 0], [1, 2, 2, 5], [1, 4, 0, 1], [7381, 4, 14762, 9], [25417, 4, 25416, 5], [6357, 19066, 19064, 6355], [1242, 1, 24799, 0]]
 
GL(2,Integers(25420)).subgroup(gens)
 
Gens := [[1, 0, 4, 1], [3, 4, 8, 11], [15254, 1, 5083, 0], [1, 2, 2, 5], [1, 4, 0, 1], [7381, 4, 14762, 9], [25417, 4, 25416, 5], [6357, 19066, 19064, 6355], [1242, 1, 24799, 0]];
 
sub<GL(2,Integers(25420))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 25420=2253141 25420 = 2^{2} \cdot 5 \cdot 31 \cdot 41 , index 1212, genus 00, and generators

(1041),(34811),(15254150830),(1225),(1401),(73814147629),(254174254165),(635719066190646355),(12421247990)\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 15254 & 1 \\ 5083 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 7381 & 4 \\ 14762 & 9 \end{array}\right),\left(\begin{array}{rr} 25417 & 4 \\ 25416 & 5 \end{array}\right),\left(\begin{array}{rr} 6357 & 19066 \\ 19064 & 6355 \end{array}\right),\left(\begin{array}{rr} 1242 & 1 \\ 24799 & 0 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[25420])K:=\Q(E[25420]) is a degree-94457954304000009445795430400000 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/25420Z)\GL_2(\Z/25420\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 nonsplit multiplicative 44 205=541 205 = 5 \cdot 41
33 split multiplicative 44 88970=2573141 88970 = 2 \cdot 5 \cdot 7 \cdot 31 \cdot 41
55 nonsplit multiplicative 66 53382=2373141 53382 = 2 \cdot 3 \cdot 7 \cdot 31 \cdot 41
77 split multiplicative 88 38130=2353141 38130 = 2 \cdot 3 \cdot 5 \cdot 31 \cdot 41
3131 split multiplicative 3232 8610=235741 8610 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 41
4141 split multiplicative 4242 6510=235731 6510 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2.
Its isogeny class 266910t consists of 2 curves linked by isogenies of degree 2.

Twists

This elliptic curve is its own minimal quadratic twist.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/2Z\cong \Z/{2}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(205)\Q(\sqrt{205}) Z/2ZZ/2Z\Z/2\Z \oplus \Z/2\Z not in database
44 4.0.3152080.2 Z/4Z\Z/4\Z not in database
88 deg 8 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 deg 8 Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 deg 8 Z/6Z\Z/6\Z not in database
1616 deg 16 Z/8Z\Z/8\Z not in database
1616 deg 16 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

No Iwasawa invariant data is available for this curve.

pp-adic regulators

pp-adic regulators are not yet computed for curves that are not Γ0\Gamma_0-optimal.