Properties

Label 266910u2
Conductor 266910266910
Discriminant 5.493×10205.493\times 10^{20}
j-invariant 1438455233808953016374089549285154194515558400 \frac{1438455233808953016374089}{549285154194515558400}
CM no
Rank 00
Torsion structure Z/2ZZ/2Z\Z/{2}\Z \oplus \Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy+y=x32351749x809794384y^2+xy+y=x^3-2351749x-809794384 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz+yz2=x32351749xz2809794384z3y^2z+xyz+yz^2=x^3-2351749xz^2-809794384z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x33047866083x37772623170018y^2=x^3-3047866083x-37772623170018 Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([1, 0, 1, -2351749, -809794384])
 
gp: E = ellinit([1, 0, 1, -2351749, -809794384])
 
magma: E := EllipticCurve([1, 0, 1, -2351749, -809794384]);
 
oscar: E = elliptic_curve([1, 0, 1, -2351749, -809794384])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

Z/2ZZ/2Z\Z/{2}\Z \oplus \Z/{2}\Z

magma: MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(365,182)(-365, 182)0022
(1683,842)(1683, -842)0022

Integral points

(365,182) \left(-365, 182\right) , (1683,842) \left(1683, -842\right) Copy content Toggle raw display

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: NN  =  266910 266910  = 235731412 \cdot 3 \cdot 5 \cdot 7 \cdot 31 \cdot 41
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: Δ\Delta  =  549285154194515558400549285154194515558400 = 2183252783124122^{18} \cdot 3^{2} \cdot 5^{2} \cdot 7^{8} \cdot 31^{2} \cdot 41^{2}
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: jj  =  1438455233808953016374089549285154194515558400 \frac{1438455233808953016374089}{549285154194515558400}  = 218325278312373412305091732^{-18} \cdot 3^{-2} \cdot 5^{-2} \cdot 7^{-8} \cdot 31^{-2} \cdot 37^{3} \cdot 41^{-2} \cdot 3050917^{3}
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 2.67885823376734187701562955302.6788582337673418770156295530
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 2.67885823376734187701562955302.6788582337673418770156295530
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
abcabc quality: QQ ≈ 0.9539609022972450.953960902297245
Szpiro ratio: σm\sigma_{m} ≈ 4.4519484110487374.451948411048737

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 0 0
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Mordell-Weil rank: rr = 0 0
comment: Rank
 
sage: E.rank()
 
gp: [lower,upper] = ellrank(E)
 
magma: Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) = 11
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: Ω\Omega ≈ 0.125901731359313294485423515640.12590173135931329448542351564
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 256 256  = 2222322 2\cdot2\cdot2\cdot2^{3}\cdot2\cdot2
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 44
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Special value: L(E,1) L(E,1) ≈ 2.01442770174901271176677625022.0144277017490127117667762502
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  =  11    (exact)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 

BSD formula

2.014427702L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.1259021.000000256422.014427702\displaystyle 2.014427702 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.125902 \cdot 1.000000 \cdot 256}{4^2} \approx 2.014427702

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 266910.2.a.u

qq2+q3+q4q5q6+q7q8+q9+q10+q12+2q13q14q15+q162q17q18+O(q20) q - q^{2} + q^{3} + q^{4} - q^{5} - q^{6} + q^{7} - q^{8} + q^{9} + q^{10} + q^{12} + 2 q^{13} - q^{14} - q^{15} + q^{16} - 2 q^{17} - q^{18} + O(q^{20}) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 13713408
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is semistable. There are 6 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
22 22 I18I_{18} nonsplit multiplicative 1 1 18 18
33 22 I2I_{2} split multiplicative -1 1 2 2
55 22 I2I_{2} nonsplit multiplicative 1 1 2 2
77 88 I8I_{8} split multiplicative -1 1 8 8
3131 22 I2I_{2} nonsplit multiplicative 1 1 2 2
4141 22 I2I_{2} split multiplicative -1 1 2 2

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2Cs 8.12.0.1

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[1, 0, 4, 1], [3, 2, 101678, 152519], [122017, 2, 0, 1], [76261, 4, 2, 9], [1, 4, 0, 1], [78123, 2, 100438, 152519], [98403, 2, 137758, 152519], [152517, 4, 152516, 5], [38133, 4, 76262, 3]]
 
GL(2,Integers(152520)).subgroup(gens)
 
Gens := [[1, 0, 4, 1], [3, 2, 101678, 152519], [122017, 2, 0, 1], [76261, 4, 2, 9], [1, 4, 0, 1], [78123, 2, 100438, 152519], [98403, 2, 137758, 152519], [152517, 4, 152516, 5], [38133, 4, 76262, 3]];
 
sub<GL(2,Integers(152520))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 152520=23353141 152520 = 2^{3} \cdot 3 \cdot 5 \cdot 31 \cdot 41 , index 4848, genus 00, and generators

(1041),(32101678152519),(122017201),(76261429),(1401),(781232100438152519),(984032137758152519),(15251741525165),(381334762623)\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 2 \\ 101678 & 152519 \end{array}\right),\left(\begin{array}{rr} 122017 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 76261 & 4 \\ 2 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 78123 & 2 \\ 100438 & 152519 \end{array}\right),\left(\begin{array}{rr} 98403 & 2 \\ 137758 & 152519 \end{array}\right),\left(\begin{array}{rr} 152517 & 4 \\ 152516 & 5 \end{array}\right),\left(\begin{array}{rr} 38133 & 4 \\ 76262 & 3 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[152520])K:=\Q(E[152520]) is a degree-18135927226368000001813592722636800000 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/152520Z)\GL_2(\Z/152520\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 nonsplit multiplicative 44 1 1
33 split multiplicative 44 44485=573141 44485 = 5 \cdot 7 \cdot 31 \cdot 41
55 nonsplit multiplicative 66 53382=2373141 53382 = 2 \cdot 3 \cdot 7 \cdot 31 \cdot 41
77 split multiplicative 88 38130=2353141 38130 = 2 \cdot 3 \cdot 5 \cdot 31 \cdot 41
3131 nonsplit multiplicative 3232 8610=235741 8610 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 41
4141 split multiplicative 4242 6510=235731 6510 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 31

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2.
Its isogeny class 266910u consists of 4 curves linked by isogenies of degrees dividing 4.

Twists

This elliptic curve is its own minimal quadratic twist.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/2ZZ/2Z\cong \Z/{2}\Z \oplus \Z/{2}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
44 Q(2,5)\Q(\sqrt{2}, \sqrt{5}) Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
44 Q(5,3813)\Q(\sqrt{-5}, \sqrt{-3813}) Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
44 Q(2,3813)\Q(\sqrt{-2}, \sqrt{3813}) Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
88 deg 8 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
1616 deg 16 Z/4ZZ/4Z\Z/4\Z \oplus \Z/4\Z not in database
1616 deg 16 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
1616 deg 16 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
1616 deg 16 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

No Iwasawa invariant data is available for this curve.

pp-adic regulators

All pp-adic regulators are identically 11 since the rank is 00.